
Material Handling >> MAGNETS ((

// // //

INDUSTRIAL MAGNETICS.

OUR BRAND VALUES

LOYALTY, DEPENDABILITY AND TRUST

Our culture of loyalty promotes lasting careers at Industrial Magnetics, which helps staff form longstanding relationships with customers who know us by name. Customers can depend on us to provide timely service, around-the-clock technical support and durable products that last. Thanks to our knowledgeable experts with decades of industry experience, customers trust the quality and accuracy of our recommended solutions.

Industrial Magnetics, Inc. is an industry leader in providing both permanent magnets and electromagnets for work holding, lifting, fixturing, conveying and magnetic separation. At IMI, our specialty is custom fabricating! We design, engineer & manufacture magnetic assemblies and separation devices for our customers' specific requirements. We take pride in the quality and performance of our products.

With worldwide distribution through a combination of a direct sales force and manufacturers representatives, we strive to provide personalized

service and innovative solutions to meet the exact needs of your application. THREE PRODUCT GROUPS, ONE GOAL...the right product for the application at the right time for our customer.

IMI is proud to be a United States - based manufacturer of magnetic assemblies and our USA M.A.D.E[™] logo is how we like to show it. You will find our USA M.A.D.E[™] logo on any of our products that are **Manufactured - Assembled -Designed - Engineered** here, in the USA, at our facilities.

TABLE OF CONTENTS

>> Magnet Basics & Safety & Guidelines	3
>> Cutting Table Devices	
)) Lifting Accessories	
Manhole Cover Lift Products	
>> Magnetic Chucks for Grinding, Milling & Turning	
 Magnetic Clamping Blocks Magnets for Under the Hook Lifting 	
>>> Magnets for Under the Hook Lifting	
>> Hammers	
>> Print Holders & Testing	
>>> Flexible Magnetic Strips	
>> Rare Earth Magnet Material	
>> Multi-Pole Encoded Magnets	
>> Cylindrical Magnet Assemblies	
>> Rectangular Magnet Assemblies	
>> Cup Magnet Assemblies	
>> Tools for Holding & Storage	
>> Magnetic Retrievers & Inspection Mirrors	
Magnetic Retrievers & Mechanical Fingers	
Automotive & Appliance Tools	33
Welding Angles & Clamping Devices.	
>> Welding Holders & Devices	
Press Break & Jig Tools	
 Welding Squares, Grounds & Tools Cantilever Clamps 	
Cantilever Clamps	
)) Latches, Bumpers & Door Holders/Stops	
>> Hands-Free Foot & Arm Pulls for Doors	
Magnets in Liquid & Demagnetizers	
>>> Electromagnets & Counter Wheels	
Transporters & End of Arm Tooling	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Conveyors & Conveyor Components	

MAGNET MATERIALS

Flexible Magnetic strips & sheets. These low energy polymer bonded magnets can form to contours and are often used for labeling or advertising. The strips or sheets can be cut or punched. Maximum temperature 160°F (70°C).

Ceramic magnets are made of Strontium Ferrite (SrFe). Ceramic magnets are a **medium strength** magnet material with a high resistance to demagnetization, long time stability (loses 0.5% of its magnetic strength in 100 years). It is a brittle material that has to be cut with diamond tipped blades. Temperature rage -148°F (-60°C) to 480°F (249°C). CARBON

Alnico magnets are made of Aluminum, Nickel and Cobalt (AlNiCo). Alnico is selected for use in **high heat** environments. It offers medium strength with the best temperature characteristics of any common magnet material. Alnico magnets have a medium resistance to demagnetization. This material is very hard and brittle and cannot be machined or drilled by ordinary means. Temperature range -167°F (-75°C) to 800°F (427°C).

Rare Earth Neodymium-Iron-Boron (NdFeB) magnets, commonly referred to as Neo, provides the **highest magnetic strength** of any magnet material. Neo has a very high resistance to demagnetization and is ideal for applications requiring the maximum strength available in any given size. Neo is usually coated or plated to prevent oxidization due to its high iron content and therefore grinding of Neo material must be avoided. Temperature range -302°F (-150°C) to 180°F (82°C).

Rare Earth Samarium Cobalt (SmCo) a high magnetic strength (similar to Neo) combined with high temperature range making it ideal for applications requiring high strength in hot environments. Temperature range -302°F (-150°C) to 392°F (200°C).

MAGNET BASICS & SAFETY INFORMATION

MAGNET SAFETY FACTORS

Our magnetic material meets Magnetic Materials Producers Association (MMPA) standards for physical guality and magnetic properties. Some magnetic material is brittle in nature and minor defects such as chips and hairline cracks are unavoidable. When selecting a magnet for your application, consider the following factors that may affect performance of the magnet:

- » Physical shape of the part where contacting the magnet will affect the holding power of the magnet
- » The surface area & condition of your steel item (rough, rusty, dirty, oily, painted or coated) will create a gap and have negative affect on the magnets hold to the surface (also known as Air-gap*)
- » Part size, thickness weight and orientation must be considered to help determine the strength of magnet required
- » The ambient or part temperature for the application will help determine the type of magnet material needed
- » Gauss levels limits for handling a part may prevent the use of magnets or limit the type/strength that can be used
- » When protecting the finish of a part the type of magnet used may be limited in order to contact the part without damaging the finish

*Air gap - The air, protective coating, paint, galvanizing, oil, rust, dirt, etc, between the magnet and the part,

LOSS OF MAGNETISM

Under normal use conditions, a permanent magnet can experience a decrease in its original holding value. The most common factors which can cause a loss of strength include:

- » Every day wear and tear on the magnets working face or surface
- » Exposure to extreme temperatures outside the magnet's temperature range.
- » Severe blows, constant vibration or shock to the magnet. Do not use a blunt instruments to position magnets.
- » Exposure to electrical currents, such as large motors or generators. Never use the magnet as part of a ground circuit.
- » Exposure to vibration.

LIFT MAGNET SAFETY FACTORS

Lift magnets can be effective even when the surfaces of the magnet and/or load have dirt, paint, scale or other debris on them. However, the best efficiency of any magnetic lift is achieved when both the magnet and the load are clean with good, uninterrupted contact between them (minimal air gap).

- » Avoid positioning the magnet in places on the load that have limited contact, are dirty or have rough surface texture
- » Clear any foreign material from the load before setting the magnet on it
- » Often check the mechanical condition of the magnetic contact face to make sure it has not been damaged during use
- » After using the lift magnet, protect the pole surfaces with oil to prevent them from rusting

PERCENTAGE OF STATED LIFTING POWER BY MATERIAL

PER	CENTAGE OF STATED LIFTING POWER BY I	MATERIAL	PEF	CENTAGE OF STATED LIFTING POWER	R BY SURFACE FINISH
≂⊨	LOW CARBON 0.05 - 0.29%	100%	ш	GROUND SURFACE	100%
	MODERATE CARBON 0.30 - 0.59%	85%	=AC	ROUGH MACHINED	100%
AR No	HIGH CARBON 0.60 - 0.99%	75%	FIN	FOUNDRY FINISH	85%
ΟÖ	HIGHER CARBON = HIGHER RESIDUAL*		<u>N</u> _	ROUGH CAST	65%

* HIGH CARBON STEEL (TOOL STEEL) WILL ABSORB MAGNETISM & MAY MAGNETICALLY STICK TO STEEL SURFACES, SUCH AS THE MAGNET, OR ATTRACT FERROUS PARTICLES.

DESIGN FACTOR & WORKING LOAD LIMITS

Design Factor is the relation of the magnet's labeled Working Load Limit (WLL) compared to the magnet's maximum lifting value under ideal conditions. Ideal conditions are when a magnet is new and pulled off a newly machined, thick, low carbon steel plate. The force it takes to break a magnet away from the steel surface is the "maximum" lifting value.

Unless otherwise noted, magnet working load limits are stated up to 50% of the actual value. These magnets may reach substantially higher holding values, but the surface condition of the part may affect the magnet's performance capabilities.

Working Load Limit (de-rating) values are then determined by taking this maximum lifting value and dividing it by the manufacturer's design factor. Design factors are minimum 2:1 and most cases 3:1. This means a magnet with a 3:1 design factor and labeled with a working load limit of 1,000 lbs will have a break-a-way force minimum of 3,000 lbs. The labeled WLL is stated for the benefit and safety of the user, due to the fact that ideal conditions rarely exist in the field. The steel that you are lifting may have scale, rust, dirt, or coatings on its surface; or the surface of the magnet itself may be worn. Any of these conditions will cause lower lifting values. Pick a lift magnet that has a WLL value slightly higher than the weight of your part.

ASME B30.20 LIFTING STANDARDS & ASME BTH-1 DESIGN STANDARD

The American Society of Mechanical Engineers (ASME) has established standards for Below-the-Hook Lifting Devices. These standards apply to the marking, construction, installation, inspection, testing, maintenance, and operation of all lifting magnets when used for single or multiple steel piece handling operations in which the operator of the lifting magnet is required to manually position the lifting magnet on the load & manually guide the load during its movement, or in close proximity to people.

Lifting devices designed to these Standards shall comply with ASME B30.20, Below-the-Hook Lifting Devices. Designed and manufactured to ASME BTH-1 Standard.

Industrial Magnetics, Inc. offers several lift magnet options that conform to the ASME B30.20 Standards

TOLL FREE imi@magnetics.com

CUTTING TABLE TOOLS & RETRIEVERS

POWER GRIP PLUS

FEATURES:

Width 0.56"

- » Securely grips heavy/hot/sharp parts
- » Lightweight, nonconductive nylon handle
- » Easy side-roll release
- » Maximum Temp: Ceramic 300°F (148°C), Neodymium 180°F (82°C), Samarium Cobalt 392°F (200°C)

Note: Magnet Length 6", Magnet

Lift - Ibs (kg)	Magnet Type	Ht. (in)	Wd. (in)	Ln. (in)	Wt. (Ibs)	Model No.
50 (22.68)	Ceramic	5	2.17	7.5	2.6	PG2050C
180 (81.65)	Neodymium	5	2.17	7.5	2.6	PG2180N
110 (49.90)	Samarium	5	2.17	7.5	2.6	PG2110S

POWER GRIP

Our Power Grip Plus sports a light-weight, non-conductive nylon handle and has an easy, side-roll release feature. It's available in three different types of magnetic material for a variety of affordable options based on magnetic strength and/or heat tolerance.

FEATURES:

- » Effective holding against shear force
- » Securely grips heavy parts
- » Maximum Temp. 300°F (148°C)

Lift - Ibs (kg)	Ht. (in)	Wd. (in)	Ln. (in)	Poles	Wt. (Ibs)	Model No.
25.0 (11.34)	2	3/4	2-1/8	2	0.40	AC2100WLH
51.5 (23.36)	2-1/4	3/4	4	2	0.75	AC2200WLH
92.5 (41.96)	2-3/4	1-7/8	5-1/4	4	1.80	AC2201WLH

GRIP STICK RETRIEVER

FEATURES:

- » Reduce employee injury by keeping hands out of press
- » Magnet & Grip ends are interchangeable.
- » Retrieve hot parts
- » 10° angled handle

Lift - Ibs (kg)	Type Ht. (in)	Wd. (in)	Ln. (in)	Wt. (Ibs)	Model No.
12.5 (5.67) Low	v Profile 7/8	1-3/8	14	0.65	IMPL2100
43.5 (19.73) Lov	v Profile 7/8	1-3/8	14	0.65	IMPL2104
40.0 (18.14) Hea	avy Duty 1-7/8	7/8	14	0.90	IMPL3040
60.0 (27.21) Hea	avy Duty 1-7/8	1-7/8	14	1.05	IMPL3060

ON/OFF POWER GRIP

FEATURES:

- » Switchable Rare Earth Magnet
- » Securely grips heavy parts
- » Works on flat or pipe
- » Max. Temp. 180°F (82°C)
- » Locking On/Off Handle
- » Comfort Grip

Flat Lift -Round Lift -Ht. Wd. Ln Magnet Magnet Wt. Model (in) (in) (in) Wd. (in) Ln (in) (lbs) lbs (kg) lbs (kg) No. 60 (27.22) 1.65 PG3060N 30 (13.61) 5 2 6 1 - 1/21 - 1/450 (22.68) 7-3/4 3-3/8 7-1/2 2-1/2 5.65 PG3100N 100 (45.36) 2 Lift value on pipe varies based on diameter and wall thickness

MAGNETIC TRIGGERLIFT[®]

Hand held lift allows strong grip of parts with an easy to use trigger release. The new molded plastic design provide better ergonomics and easier release.

FEATURES:

- » Retrieve hot parts from Cutting tables
- » One handed operation
- » Permanent magnet
- » Move parts faster and easier
- » Plastic injection molded body and trigger
- » Maximum Temp. 300°F (148°C)

Lift - Ibs (kg) Height (in) Width (in) Length (in) Weight (Ibs) Model No. 36 (16.33) 6" 2-3/4 4-1/8 B090 .90

PART PICKER MAGNET

This magnet is ideal for picking parts off cutting tables, retrieving parts, or holding steel in place during other operations.


FEATURES:

- » Securely grips heavy or sharp parts
- » Powerful, permanent, rare-earth magnet
- » Light-weight, aluminum handle
- » Can be used on hot parts up to 180°F (82°C)

Hold - Ibs (kg) Diameter (in) Ln. (in) Wt. (lbs) Model No. PP2004R 110 (49.90) 2 03 0.60 6

LCM0150-01

CUTTING TABLE TOOLS & RETRIEVERS

LOAD CONTROL MAGNET

Stay safe. This extremely powerful On/Off Permanent Rare Earth magnet lets you guide loads into position without being in close proximity. Attach the On/Off permanent magnet to a corner or along the side of your load. As the load is lifted, the Load Control Magnet's articulating connection to the lightweight telescoping pole allows you to control and position the load exactly where you want without endangering yourself, others or expensive equipment, should your lifting device fail.

FEATURES:

- » Powerful On/Off Rare Earth Magnet
- » Buy the magnet separately, use your own pole
- » Works on Flat and Pipe
- » Pole telescopes from 6' to 12'

Hold - Ibs (kg)	Pole Included	Length (in)	Extended Length (in)	Weight (lbs)	Model No.
150 (68.04)	No	7	N/A	1.20	LCM0150-01
150 (68.04)	Yes	80	147	2.70	LCM0150-02
450 (204.12)	No	8.50	N/A	4.70	LCM0450-01
450 (204.12)	Yes	83	150	6.20	LCM0450-02

Note: Magnet connector accepts a standard paint roller handle extension thread.

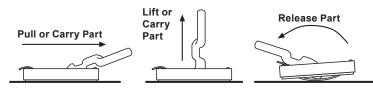
J LCM0150-02

RFR3600

RAPIDFIRE RETRIEVER®

FEATURES:

- » Retrieve hot parts off cutting tables with speed & precision!
- » Increase production while reducing the potential for injury
- » Powerful Rare Earth Magnet holds part securely
- » "On-Command" release with just a quick blast of shop air
- » Actuate release with just one finger, it's as simple as the pull of a trigger


Lift - Ibs (kg)	Dia. (in)	Length (in)	Weight (lbs)	Model No.
35.0 (15.88)	3	24	2.1	RFR2400
35.0 (15.88)	3	36	2.3	RFR3600
35.0 (15.88)	3	48	2.5	RFR4800
16.0 (7.40)	1.5	7	0.5	RFR7-15
35.0 (15.88)	3	7	0.8	RFR7-30

MAGNETIC SHEET HANDLERS

FEATURES:

- » Lift or move sheets, plates, hot or oily parts
- » Handle sheets stacked horizontally or vertically
- » Protect workers from cuts, slivers, nicks & burns
- » Increase productivity

Note: Not intended to be used with a crane

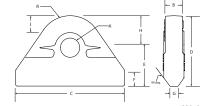
Lift - Ibs (kg) Th. (in)	Wd. (in)	Handle Ln. (in)	Overall. Ln. (in)	Mag. Ln. (in)	Mag. Th. (in)	Wt. (Ibs)	Max. Penetration (in)	No. of Poles	Model No.
50.0 (22.6)	4	3-5/8	8	11-1/2	6-1/8	1-3/8	3.75	3/16	4	B100
125.0 (56.7) 4	7-1/4	8	11-1/2	6-1/8	1-3/8	6.25	5/16	6	B250
200.0 (90.7) 4	7-1/4	8	11-1/2	6-1/8	1-3/8	7.25	5/16	8	B400
300.0 (136.0) 4	7-1/4	8	11-1/2	6-1/8	1-3/8	8.25	5/16	10	B600

TOLL FREE 1.800.662.4638 imi@magnetics.com

magnetics.com

RFR7-30

5


LIFTING ACCESSORIES

WELD-ON PADEYES

Engineered and certified to meet all ASME BTH-1 categories and classes. Eliminate the need and time to engineer, fabricate, machine and certify lifting padeyes. By purchasing these one-of-a-kind padeyes, you can have them on the shelf ready to weld and speed up delivery, testing and approval of your projects.

FEATURES:

- » Hole is reamed to fit shackle pin/bolt ± 0.01"
- » Weldable A36 Carbon Steel
- » Weld Spec and Weld Line on Padeye
- » Date Coded
- » Engineered and Certified

WLL (Tons)	Shackle Size (in)	A (in)	B (in)	C (in)	D (in)	E (in)	F (in)	G (in)	H (in)	l (in)	R (in)	Weight (lbs)	Minimum Weld	Carbon Steel Model No.
1/2	1/4	21/64	11/32	2-7/64	1-3/8	3/4	5/16	N/A	5/8	7/16	5/8	0.20	0.188"	PE0050
1	3/8	15/32	9/16	2-7/16	1-5/8	7/8	3/8	N/A	3/4	1/2	3/4	0.40	1/4"	PE0100
1-1/2	7/16	17/32	5/8	2-3/4	1-9/16	7/8	1/4	7/32	11/16	13/32	11/16	0.40	3/16 PJP with 3/16" Fillet	PE0150
2	1/2	43/64	11/16	3-1/4	2-1/8	1-1/8	7/16	5/32	1	21/32	1	0.80	1/4 PJP with 1/4" Fillet	PE0200
4-3/4	3/4	15/16	1-1/8	4-7/16	2-5/8	1-7/16	1/2	15/32	1-1/4	25/32	1-1/4	2.20	5/16 PJP with 5/16" Fillet	PE0475
6-1/2	7/8	1-1/16	1-5/16	5-3/16	2-15/16	1-5/8	1/2	3/8	1-5/16	25/32	1-5/16	3.05	7/16 PJP with 7/16" Fillet	PE0650

WLL = Working Load Limit

COMPACT LID REMOVER

Magnetic lid remover offers a lightweight and compact, one-piece design that is easy to use, store and transport. Harnessing the forces of magnetism and leverage, users can remove and replace manhole lids up to 450 lbs.

To operate, remove the protective guard from the magnet, and carefully place the unit on the edge of the manhole cover. Make sure the leverage bar is on a solid surface (road). Push down on the handle to raise the lid from the manhole and pull backwards to clear the lid from the hole. The magnet is freed from the lid by moving the handle over the magnets in the opposite direction.

FEATURES:

- » Powerful Rare Earth Magnets
- » Durable Stainless/Aluminum Construction with Rubber Grip T-Handle
- » Magnet storage guard when not in use

DescriptionWt. (lbs)Model No.One-Piece, T-Handle, Two Magnets, 36" Tall, 12" Wide25MCL450

ON/OFF MAGNETIC UTILITY LIFTER

Stop bending over to lift and remove cast iron utility and valve box covers! Also lifts pipes and other steel items. Reduce finger and toe injuries with this lightweight deep reach switchable permanent magnetic lifter. The magnetic field penetrates textured surfaces of lids and allows the operator to ergonomically lift the casting out of the way. This Magnetic Utility Lifter has a locking On/Off handle for safety

and makes removing covers quick and easy.

Lift - Ibs (kg)	Height (in)	Width (in)	Length (in)	Weight (lbs)	Model No.
50.0 (22.68)	28-1/2	5-1/2	3-1/2	7.65	MCLVB01
75.0 (34.02)	28-1/2	7	5	14.25	MCLVB02

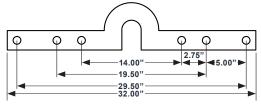
MANHOLE COVER LIFT PRODUCTS

MANHOLE COVER LIFT DOLLY SYSTEM, MANHOLE COVER LIFT SYSTEM

Easily move heavy manhole covers up to 400 lbs. without worrying about your fingers, toes and back. This cover lift system uses a unique adjustable four-position hook with a four-length retractable handle for terrific leverage, even in tight spots. The three angle positions (90°, 105° and 120°) let you adjust the system for any lifting situation. The safety latch hook makes grabbing the magnet or spreader bar a one-person job. Choose from steel or aluminum manhole dollies. Dollies include your choice of heavy-duty 6", 10" or 12" diameter wheels. The dolly folds up and handle breaks down for easy storage. When fully extended, the handle length is 64"; when folded and collapsed down it is 41" long.

Reduce lost time injuries caused by handling covers

Minimize stress & strain on your body-system does the heavy work for you Retractable four-length handle gives maximum leverage from any angle Ideal for survey crews, handle breaks down for easy storage & transportation Makes moving covers fast, easy and a one-person operation


Several magnet and hook configurations

are available for use with your dolly

Use each dolly with either a single magnet in the center of the manhole cover, or with two magnets and a spreader bar (magnets and spreader bar sold separately). When using two magnets on a spreader bar, the load is more balanced-ideal for large covers or heavily textured surfaces. The spreader bar has three location holes so you can place the magnets where you gain the best magnet-to-steel-ratio. A sample of common On/Off Locking Rare Earth magnet choices are listed in the table below. Contact us to for more information on other magnet options.

The optional cover lift Dolly Extension Hook lets you lift very large diameter manhole covers that might otherwise interfere with proper dolly operation. Use on covers up to 54" for 6" wheeled dollies, 50" for 10" wheeled dollies or 48" for 12" wheeled dollies.

COVER SAMPLES AND RECOMMENDATIONS
DOLLY WITH SINGLE MAGNET
Textured - all high points on same plane
DOLLY WITH TWO MAGNETS ON A SPREADER BAR
Center Raised - Manhole Cover Cross Section
Low Center - Manhole Cover Cross Section

Manhole Cover up to 26" dia. - Magnet & Dolly Combo Model No. Description Weight (lbs) MCL2W06PNL0800 Steel Dolly with 6" Wheels and PowerLift Magnet 46 + 21 MCL2W12PNL0800 Steel Dolly with 12" Wheels and PowerLift Magnet 52 + 21 MCL3W06VL0600 Aluminum Dolly with 6" Wheels and VersaLift Magnet 29 + 20 Aluminum Dolly with 12" Wheels and VersaLift Magnet 34 + 20 MCL3W12VL0600 30"-35" dia. Manhole Covers & Trench Grates - Magnet & Dolly Combo MCL2W06PNL1600 Steel Dolly with 6" Wheels and PowerLift Magnet 46 + 51 MCL2W12PNL1600 Steel Dolly with 12" Wheels and PowerLift Magnet 52 + 51 MCL3W06VL1200 Aluminum Dolly with 6" Wheels and VersaLift Magnet 29 + 37 Aluminum Dolly with 12" Wheels and VersaLift Magnet MCL3W12VL1200 34 + 37For 36" and greater dia. Manhole Covers or Grates, Vented Lids, Heavily Textured Surfaces a Dolly, plus a Spreader Bar with (2) magnets from menu below, i.e. MCL200W06 + MCL660X2 **Dollies Only** MCL2000W06 Dolly, Steel, 6" Wheels 46 MCL2000W10 Dolly, Steel, 10" Wheels 52 Dolly, Steel, 12" All-Terrain Wheels MCL2000W12 52 Dolly, Aluminum, 6" Wheels MCI 3000W06 29 Dolly, Aluminum, 10" Wheels MCL3000W10 34 MCL3000W12 Dolly, Aluminum, 12" All-Terrain Wheels 34 Magnet Options Spreader Bar with (2) PNL0800 Magnets MCI 660X2 49 MCL600X2 Spreader Bar with (2) Premium VL0600 Magnets 47 PNL0800 Powerlift® Magnet only, 800 lbs Rating 21 PNL1600 Powerlift® Magnet only,1600 lbs Rating 51 VersaLift™ Premium Lightweight Rare Earth Lift Magnet, 600 lb Rating 20 VL0600 VersaLift™ Premium Lightweight Rare Earth Lift Magnet, 1200 lb Rating VI 1200 37 Accessories MCLWC18X16 Wheel Chocks 18" x 16" 17.5 MCLHOOKEXT

Dolly Hook Extension for Manhole Covers up to 48"

MCL3000W06 w/ PNL1600

MCL3000W06 w/ MCL660X2

MCL3000W06 w/ PNL1600

3

MCL3W06VL0600

MAG-MATE[®]

It doesn't matter if you are 5'6' or 6'5", the MCL Dolly can be adjusted to ergonomically accommodate any user.

TOLL FREE imi@magnetics.com

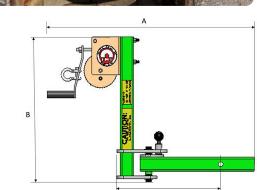
MAG-MATE® MANHOLE COVER LIFT PRODUCTS

HD MANHOLE COVER LIFT SYSTEM

The Heavy Duty (HD) manhole cover lift dolly and Magnet & Dolly Combination system take several key features of our regular manhole cover lift system and adds an extra telescoping handle, giving you more leverage when lifting manhole covers.

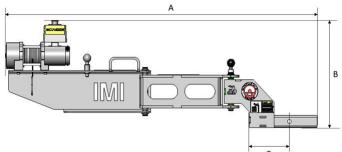
POWERARM[™] - VEHICLE MOUNTED

The Manhole PowerArm[™] makes lifting and replacing manhole covers the most ergonomic. Great for repetitive access like survey/cleaning crews. Electric Hoist: drive within 3 feet of the center of the lid and let the "Arm" adjust to your location. This "Arm" has a 3-foot, 180° swing radius that allows the positioning of the magnet to the center of the manhole cover. Manual Hoist: Use backup camera to get as close to center as possible. Both "Arms" have 400 lbs. lifting capacity, fit into a standard 2" square receiver hitch and are constructed of welded tubular steel. (Rare Earth Magnet sold separately). Use PowerArm[™] to lower items such as camera tractors, large sewer nozzles, pipe plugs, etc.


ELECTRIC HOIST SPECIFICATIONS:

- » 55 AMP, 12 VDC with power-up & power-down control, removable
- » 16' remote control cord and a 20' galvanized cable with latch hook
- » Provided with a 2-Pole DC power connector, heavy-gauge 13' long lead to connect hoist to vehicle battery (+) positive terminal and 6' long ground cable to connect to vehicle frame

MANUAL HOIST SPECIFICATIONS:


- » Worm Gear hoist that will hold load when handle is released
- » Polyester strap with Zinc-plated hook & safety latch
- » Remove hoist, insert sideways for tailgate access, storage, and travel

Winch Type	A (in)	B (in)	C (in)	Weight (lbs)	Model No.
Electric	56-3/8	17-13/16	7-1/4	87	MCLPAE2000
Manual	30-7/8	20-1/2	20-13/16	30	MCLPAM1000

C

MAG-MATE[®]

MANHOLE COVER LIFT PRODUCTS

MAGNETIC FLOOR & SHOP SWEEPERS

SS: Works on hard floors or carpeted areas. Clean shops, offices, retail stores right up to the edge of walls, machinery into corners with its unique wheel design.

FS/IS: Ideal for floors, parking lots and construction sites (IS is Self Cleaning).

Magnet Width (in)	Overall Width (in)	Depth (in)	Height (in)	Wheel Diameter (in)	Clearance (in)	Hold (lbs)*	Weight (lbs)	Model No.
19	19-1/2	3	52	1-1/4	3/4	30	7.0	SS1800
12	16-1/2	5	48	6	1-3/4	80	11.0	FS1200
24	28-1/2	5	48	6	1-3/4	160	22.0	FS2400
36	40	5	48	6	1-3/4	240	31.0	FS3600
								IS1400
24	29-1/2	7-1/2	49-1/2	6	1-3/4	400	46.0	IS2400
*Note: Sweepers are de	esigned for attracting fe	errous metal p	ieces and debr	ris and are not designed for	or lifting heavy obj	ects. The Hold	l rating is measu	ured by a

*Note: Sweepers are designed for attracting ferrous metal pieces and debris and are not designed for lifting heavy objects. The Hold rating is measured by a vertical pull test from a 0.5" thick ground steel plate for purpose of magnetic strength comparisons only.

MAGNETIC SUSPENDED SWEEPERS

YS: Aluminum and stainless steel construction for outdoor use. Hang the sweeper from vehicles, utility equipment or skid-steers.

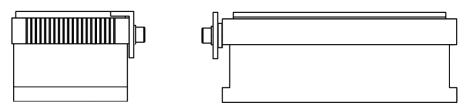
Magnet Wd. (in)	Overall Wd. (in)	Depth (in)	Height (in)	Hold (lbs)*	Weight (lbs)	Model No.
36	36-1/2	5	2-11/16	320	39.0	YS3600
48	48-1/2	5	2-11/16	426	52.0	YS4800
60	60-1/2	5	2-11/16	532	86.0	YS6000
84	84-1/2	5	2-11/16	745	91.0	YS8400

ROAD/TOWABLE ELECTROMAGNETIC SWEEPERS

A towable electromagnetic sweeper design that is supplied with wheels, pneumatic tires, adjustable towbar, and parking stand. Stand folds up into the towbar when not in use. All units can be supplied with a heavy duty 115volt AC generator mounted to the top. Generators are powered by a 4 stroke OHV gasoline engine and are energized and de-energized using the 115 VAC "ON" – "OFF" switch on the generator. A remote switch on 20ft of cable is available upon request.

Sweeping Width				Adjustable Ground			
(in)	Overall Width (in)	Depth (in)	Height (in)	Clearance (in)	Hold (lbs)	Weight (lbs)	Model No.
60	73	20	32	4-10		2600	RSE060
72	84	20	39	4-10		3000	RSE072
96	108	20	39	4-10		3500	RSE096
120	132	20	39	4-10		3900	RSE120
		-					

*Note: Sweepers are designed for attracting ferrous metal pieces and debris and are not designed for lifting heavy objects. The Hold rating is measured by a vertical pull test from a 0.5" thick ground steel plate for purpose of magnetic strength comparisons only.


TOLL FREE 1.800.662.4638 imi@magnetics.com

magnetics.com

WORKHOLDING CHUCKS FOR GRINDING & MILLING

PERMANENT MAGNETIC CHUCK - GRINDING

Walker's permanent magnetic chucks are manually operated. Made with powerful permanent rare earth (NEO) magnet materials, these chucks can hold a wide range of work-pieces without transferring heat into the material. These chucks allows for holding work-pieces during both surface grinding, as well as light milling. EDM is also possible.

NEOMAX[™] PERMANENT MAGNETIC CHUCK - GRINDING

The NeoMax[™] chuck is a high powered, rare earth permanent magnetic chuck. This model is an extremely versatile magnetic chuck that can be used for grinding, sinker edm and light milling applications.

FEATURES:

Solid steel/Stainless steel fine pole top plate

- » Steel body milled on all sides
- » Powerful Neodymium magnet material
- » One backrest and one end stop for use on two adjacent sides are included with hardware
- » Allen key for actuation and 2 clamps included
- » Uniform holding power

Face Size (in) AxB	Face Ht. (in) C	Overall Wd. (in) D	Overall Lg. (in) E	Weight (Ibs)	Model No.
6x12	2.79	5.9	11.81	57	CP0612C2
6x18	2.79	5.9	17.71	86	CP0618C2
8x18	2.79	7.87	17.71	114	CP0818C2
10x15	2.95	9.84	14.96	125	CP1015C2
12x18	2.95	11.81	17.71	172	CP1218C2
12x24	2.95	11.81	23.26	237	CP1224C2

The NEOMICRO (Micropitch) Permanent Magnetic Chucks offer superior holding and positioning accuracy for precision grinding applications. Designed to reliably hold a large range of work-piece sizes, from very small and thin up to large items.

FEATURES:

- » Unique actuating mechanism eliminates switching deformation
- » Uniform magnet force distribution over entire working area
- » Specially designed magnetic circuit generates 30% higher holding force compared to other micropitch chucks
- » Very low residual magnetic field allowing for easy removal of grinding swarf
- » Low height allowing maximum wheelhead clearance and ability to use the Neomicro on top of another chuck
- » Backrest and end stop on two adjacent sides
- » Allen key for actuation and 2 clamps included

Face Size (in) AxB	Face Ht. (in) C	Overall Wd. (in) D	Overall Lg. (in) E	Pole Width (in) I	Brass Width (in) J	Weight (Ibs)	Model No.
4x10	1.9"	3.93	9.84	0.055	0.02	22	CP0410MICRO
5x10	1.9"	5.11	9.84	0.055	0.02	29	CP0510MICRO
6x10	2.0"	5.9	9.84	0.055	0.02	33	CP0610MICRO
6x12	2.0"	5.9	11.81	0.055	0.02	39.6	CP0612MICRO
6x14	2.0"	5.9	13.77	0.055	0.02	48.4	CP0614MICRO
6x17.74	2.0"	5.9	17.71	0.055	0.02	61.6	CP0618MICRO
8x17.74	2.0"	7.87	17.71	0.055	0.02	81.4	CP0818MICRO
8x24	2.2"	7.87	23.62	0.055	0.02	107.8	CP0824MICRO

WORKHOLDING CHUCKS FOR GRINDING & MILLING

NEOMILL PERMANENT MAGNETIC CHUCK - MILLING

Neomill Permanent Magnetic Chuck for milling. These permanent magnetic chucks are designed using Neodymium magnets for milling applications. The dual Neodymium magnet pack generates an exceptionally high holding force on workpieces with an uneven or rough contact surface.

FEATURES:

- » Low magnetic field, concentrated near the top plate surface to reduce chip contamination of the work-piece & cutting tool
- » Transverse, close pole division of 11 mm of steel and 4mm of brass allows optimal holding of work-pieces only 26 mm long and 6 mm thick (Usable top plate life: 5 mm)
- » Nominal holding force 120 N/cm2
- » Allen key for actuation and 2 clamps included
- » The top plate can be drilled and tapped to accommodate pins, pegs or other clamping aids.

Face Size AxB (in)	Face Ht. C (in)	Overall Wd. D (in)	Overall Lg. E (in)	Clamp Slot G (in)	Clamp Slot H (in)	Pole Width I (in)	Brass Width J (in)	Weight (Ibs)	Model No.
6x12	2.2	6.63	12.31	0.43	0.47	0.433	0.157	45	CP0612MIL
6x18	2.2	6.63	18.31	0.43	0.47	0.433	0.157	77	CP0618MIL
8x18	2.2	8.63	18.31	0.43	0.47	0.433	0.157	110	CP0818MIL
12x24	2.5	12.63	24.31	0.43	0.47	0.433	0.157	196	CP1224MIL

RECTANGULAR ELECTROMAGNETIC CHUCKS LOW-PROFILE ELECTROMAGNETIC CHUCK - GRINDING

Fine division Long Bar Pole electromagnetic chuck ideal for surface grinding small to medium parts.


FEATURES:

- » Maximum workholding surface
- » Fine pole division for more uniform magnetic holding of small parts
- » Lowest height for maximum clearance
- » Solid brazed construction top plate protects coil from penetration of coolant; provides stronger, more stable work surface.
- The LBP is an extremely versatile chuck. Its variable holding power permits easy flat grinding (without shimming) or workpieces that do not have one true surface.
- The magnetic surface pattern allows for simple and inexpensive tooling designs to hold intricate shaped workpieces.
- » Suitable for EDM applications

Face Size		Face Ht.	Overall Width	Overall Length	Overall Height	Clamp Slot	Clamp Slot	Pole Width	Brass Width	Weight		Recommended
AxB (in)	Watts	C (in)	D (in)	E (in)	F (in)	G (in)	H (in)	l (in)	J (in)	(lbs)	Model No.	Control
4x8	26	2.88	4.54	8.54	3.06	0.5	1.43	0.13	0.03	22	CE0408LBP	SMART150WB
6x12	50	2.88	6.54	12.54	3.06	0.5	1.43	0.13	0.03	46	CE0612LBP	SMART150WB
6x18	85	2.88	6.54	18.54	3.06	0.5	1.43	0.13	0.03	70	CE0618LBP	SMART150WB
8x15	95	2.88	8.54	15.54	3.06	0.5	1.43	0.13	0.03	80	CE0815LBP	SMART150WB
8x18	100	2.88	8.54	18.54	3.06	0.5	1.43	0.13	0.03	100	CE0818LBP	SMART150WB
8x20	125	2.88	8.54	20.54	3.06	0.5	1.43	0.13	0.03	95	CE0820LBP	SMART150WB
8x24	150	2.88	8.54	24.54	3.06	0.5	1.43	0.13	0.03	130	CE0824LBP	SMART150WB
10x18	82	2.88	10.54	18.54	3.06	0.5	1.43	0.13	0.03	130	CE1018LBP	SMART150WB
12x24	141	3.13	12.54	24.54	3.06	0.5	1.43	0.13	0.03	185	CE1224LBP	SMART150WB
16x32	294	3.69	16.54	32.54	3.06	0.5	1.43	0.13	0.03	312	CE1632LBP	SMART300WB

CUSTOM CHUCK OPTIONS ELECTROMAGNETIC & ELECTROPERM - GRINDING & LIGHT MILLING

With years of experience in recommending the right chuck design for your application, chucks can be custom designed and specified when a standard chuck does not meet the needs of your application. Many tines the application can call for unique pole designs and configurations. We can help select the right match for your application for a turn-key solution in many electromagnetic and electro-permanent chuck configurations and sizes. These can be designed to integrate into existing systems to replace old chucks or improve clamping performance. Chuck controls can also be provided and engineered to meet the exact needs of your processes.

TOLL FREE 1.800.662.4638 imi@magnetics.com

11

WORKHOLDING CHUCKS FOR GRINDING & TURNING NEOSTAR ROTARY PERMANENT CHUCK

request. Includes Allen key for a

eostar Chucks with Neodymium (rare earth) magnetic circuits are designed for holding rings and bearing races, as	
ell as solid rounds. This chuck comes standard without center hole. An optional through hole can be provided upon	
quest. Includes Allen key for actuation.	

	NEOSTAR Specifications							
Size (mm)	Total Dia. (in)	Total Height (in)	Weight (lbs)	Model No.				
150	5.9	2.24	18	CP06STAR				
200	7.9	2.24	31	CP08STAR				
250	9.84	2.76	60	CP10STAR				
300	11.8	2.87	90	CP12STAR				
350	13.8	2.87	121	CP14STAR				
400	15.7	2.95	165	CP16STAR				
500	19.7	2.95	260	CP20STAR				
600	23.6	2.95	374	CP24STAR				

RP RADIAL POLE ROTARY ELECTRO CHUCK

Rotary Electromagnetic Chucks are made in radial pole multi-coil design for use in hard turning and free state grinding. The radial pole design is recommended for holding circular workpieces such as rings and discs. Most radial pole chucks come with t-slots, but tapped holes are also available for mounting tooling. The smaller chucks have four or six poles, while the larger

chucks have ten or twelve poles.

Dia. (in)	Weight (Ibs)	Model No.
6"	22	CE06RP
8"	22	CE08RP
10"	19.8	CE10RP
12"	33	CE12RP
14"	39.6	CE14RP
16"	48.4	CE16RP
18"	61.6	CE18RP

ELECTROMAGNETIC MAGNETIC CHUCK CONTROLS SMART-D SERIES

The Smart-D Series is wall or cabinet mounted automatic release chuck control system for electromagnetic chucks.

FEATURES:

- » Full, variable & residual holding power
- » Input Voltages: 208/230/240/380/440/480 VAC (50/60 Hz.)
- » Specify AC Voltage when ordering

OPTIONS:

- » Touchpad Controls for some or all control functions
- » Automatic release to ensure workpieces releases based on machine input signal

SCV - MANUAL RELEASE FOR MACHINE MOUNTING

Manual release chuck control with Variable holding 115 VAC input with 0-110 VDC output.

Specifications					
Model	Watts	Net Weight (Ibs)			
SCV-1.5	150	8			

SMART-B SERIES - AUTOMATED RELEASE CONTROL

Automatic Release Controls for machine mounting. Smart controls are designed to be used with electromagnetic chucks, with an input of 115 VAC, output 0-110 VDC.

FEATURES:

- » Touchpad control allows easy selection of full, residual, variable and release positions
- » Automatic release cycle assures workpiece release, while freeing machine operators from manual demagnetizing operations

Specifications					
Model	Watts	Net Weight (Ibs)			
SMART-1B	150	13			
SMART-3B	300	16			
SMART-5B	500	18			

	S	pecifications	
Model	Watts	Standard (Output Voltage)	Net Weight (lbs)
SMART-3D	300	115 VDC	60
SMART-5D	500	115 VDC	60
SMART-10D	1000	115 VDC	205
SMART-15D	1500	115 VDC	215
SMART-20D	2000	230 VDC	280
SMART-30D	3000	230 VDC	300
SMART-50D	5000	230 VDC	325
SMART-75D	7500	230 VDC	410
SMART-100D	10,000	230 VDC	440
		0/240/380/440/480 VA	

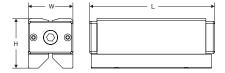
Please specify AC Voltage when ordering

MAGNETIC CLAMPING BLOCKS

MAGNETIC CLAMPING BLOCKS

MBX Magnetic Clamping Blocks have opposite clamping sides when turned ON. Designed to clamp workpieces to steel surfaces, such as machinery or worktables. Ideal for applications such as welding, deburring, tapping or machining operations. With two different shaped clamping surfaces, almost any workpiece geometry can be held such as: flat, round, square or custom profiles. Clamps allow machining on 5-sides, reducing the number of operations.

FEATURES:


- » Powerful ON/OFF Permanent 2-sided Magnet
- » Holds Flats, Round, Square Workpiece Geometry
- » 90° swing ON/OFF Activation
- » Nickel-plated Housing
- » 3rd Clamping Side for Vertical Holding
- » Turns ON/OFF on Either End
- » Use Hex Rod to Join Two Clamps (not included)
- » Sold in Pairs

Fully nickel-plated housing

3rd Clamping Side for vertical Stand

Clamping side for profiles with 90° prism and flat material (Surface 2)

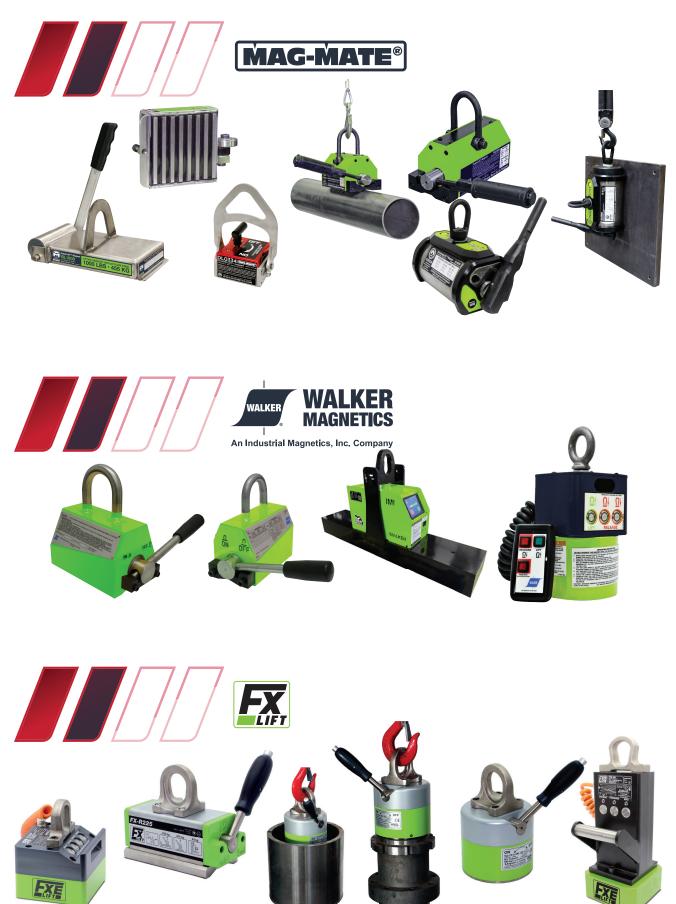
 Round Material Angle Material

 Surface 1 & 2
 Angle Material

 Output Descent on the surface 1 of the surface 1 o

Flat Material Surface 1

The 90° poles of the MBX can be replaced with workpiece-specific poles Vertical Drilling, Grinding, Welding 3rd side Hold


Multiple MBX can be switched at the same time (Hex rod not included)

	Overall I	Dimensions	Surfa	ace 1 Dimens	ions	Sur	face 2 Dim. w/	90°	
Model No.	L	W H	L	W	Dia. Min.	L	W	Dia. Min.	Weight (ea)
MBX05PK2	5.63"	2.52" 2.80"	4.72"	2.24"	2"	5.35"	2.5"	3/8"	8.6 lbs
IVIBAU5PK2	143 (mm) 6	i4 (mm) 71 (mm)	120 (mm)	57 (mm)	50 (mm)	136 (mm)	64 (mm)	10 (mm)	3.9 Kg
MBX07PK2	7.01"	2.52" 2.80"	6.14"	2.24"	2"	6.77"	2.52"	3/8"	10.8 lbs
WIDAU/ FRZ	178 (mm) 6	i4 (mm) 71 (mm)	156 (mm)	57 (mm)	50 (mm)	172 (mm)	64 (mm)	10 (mm)	4.9 Kg
MBX10PK2	7.24"	3.43" 3.47"	6.38"	2.24"	2"	7.01"	2.99"	1"	19.40 lbs
MDA IUFKZ	184 (mm) 8	7 (mm) 88 (mm)	162 (mm)	57 (mm)	50 (mm)	178 (mm)	76 (mm)	25 (mm)	8.8 Kg
			Bi	reakaway Pul	Pounds from W	ork Holding	Face		
				T		▶			
Model No.	Force to Breakaway from one surface	Force to Breaka from either Top (1" plate) or Bot Plate (3" plate	Plate from Base tom 1" Plate or	Breakaway e Plate with n Either Pole ace	Sheer Force Slide Plate o either Magnet	on from	O.D. Bar Pulleo V-Pole w/Magn 3" Base Plate	from	D. Bar Pulled Flat Pole w/ et on 3" Base Plate
MBX05PK2	1125 lbs (510 Kg)	320 lbs (145 K	g) 120 lbs	s (54 Kg)	80 lbs (36 K	g) 18	30 lbs (81 Kg)	115	lbs (52 Kg)
MBX07PK2	1575 lbs (714 Kg)	370 lbs (167 K	g) 160 lbs	s (72 Kg)	100 lbs (45 k	(g) 20	00 lbs (90 Kg)	130	lbs (58 Kg)
MBX10PK2	2250 lbs (1021 Kg)	600 lbs (272 K	g) 200 lbs	s (90 Kg)	190 lbs (86 k	(g) 31	0 lbs (140 Kg)	280 I	bs (127 Kg)

TOLL FREE 1.800.662.4638 imi@magnetics.com

magnetics.com

LOOKING FOR LIFT MAGNET SOLUTIONS? SEE OUR NEW LIFT CATALOG 202-B FOR MORE LIFT OPTIONS

STANDARD & CUSTOM MAGNETS FOR UNDER THE HOOK LIFTING

HAMMERS, MAGNETIC FIELD TESTING & PRINT HOLDERS

NO-MAR® NO BOUNCE SAFETY POLYURETHANE HAMMER

FEATURES:

- » True Safety Hammer (No Steel, Non-Sparking)
- » High Performance Urethane Head. Shore A70
- » 13" long Fiberglass and Rubber Composite Handle with Ergonomic Grip
- » Absorbs Recoil Shock

Head Face Dia. (in)	Head Length (in)	OAL (in)	Weight (lbs)	Model No.	
1-7/8	3-1/8	15-1/2	1.30	HU187	
2-3/8	4	15-3/4	1.60	HU206	
2-5/8	5-1/8	16	2.2	HU262	

NO-MAR® LEAD HAMMER

FEATURES:

- » Genuine 4% Antimonial Lead
- » Head Secured by Locking Pin
- » Designed for NO-RECOIL and NO-MAR Blows with Max Impact
- » Vinyl Grip for More Comfort & Less Fatique
- » Conforms to ASME B107,400 2018

Head Face Dia. (in) Head Length (in) Handle Length (in) OAL (in) Weight (lbs) Model No.

3/4	2-5/8	9	10	1	HL075-01	
1-1/8	2-5/8	8-1/2	10	2	HL112-02	
1-9/16	3-1/8	8-3/4	10-1/2	3	HL156-03	
1-5/8	3-3/4	9	11	5	HL162-05	

NO-MAR® BRASS SAFETY HAMMER

FEATURES:

- » High Purity Brass Head
- » Fiberglass Handle with Ergonomic Grip
- » Conforms to ASME B107.400 2018
- » Non-Sparking & Non-Magnetic
- » Exceptional Long Life Head

- Head Face Dia (in) Head Length (in) Handle Length (in) OAL (in) Weight (lbs) Model No.

1	2-5/8	12-1/2	14	1	HB100-01
1-1/4	3-5/8	13	14-7/8	2.1	HB125-02
1-1/2	3-3/4	13	14-7/8	3.1	HB150-03
1-3/4	4-3/8	13	15	4.1	HB175-04
1-7/8	3-3/4	13	15-1/2	4.75	HB187-05

MAGNETIC VIEWING FILM

This film allows you to identify the magnetic field patterns of

magnetic materials and assemblies. The viewing film can be used to check for damage to the magnet material within most types of magnet assemblies. Simply hold the film against the surface of any magnet and the pattern of the magnetic field is revealed. The 3" square sheets are reusable.

Model No. XX0044

MAGNETIC POLE TESTER

Magnetic Pole Tester for checking for the presence of magnetic fields. Perfect for Coil testing, Polarity checks, Electric motor assembly, error analysis, quality control & more. Sensitivity: ±15 mT on/off hysteresis. Operating temperature range: 0°C to +50°C. Battery: 4 x 1.5V button cell, LR44 is included.

Length Width Height Weight Model Display (mm) (mm) (mm) (lbš) No. Two-LED display (green=S, red=N) XX6029 143 22 19 0.07

MAGNETIC PRINT HOLDERS

FEATURES:

» Holds papers, prints, charts and more to steel desks, partitions, machinery, etc.

» Holds through many layers of prints

	Ro	und Print	Holders		
Hold - Ibs (kg)	Diameter (in)	Height (in)	OAH (in)	Weight (lbs)	Model No.
7.0 (3.18)	1.24	0.19	0.69	0.08	PHMX1000*
11.0 (4.99)	1.41	0.28	1.03	0.10	PHMX1500*
19.0 (8.62)	2.03	0.31	1.06	0.18	PHMX2000*
41.0 (18.60)	2.63	0.38	1.13	0.38	PHMX2500*
47.5 (21.54)	3.18	0.44	1.19	0.61	PHMX3000*
*Δvailahle in n	nulti nacke s	ek vour ea	les cont	act	

Available in multi packs, ask your sales contact

	Rec	tangular I	Print Holde	rs	
Hold - Ibs (kg)	Height (in)	Width (in)	Length (in)	Weight (lbs)	Model No.
11.5 (5.22)	1.31	1.13	2.38	0.29	PH2100
19.0 (8.62)	1.29	1.63	2.00	0.34	PH2101
22.5 (10.21)	1.31	2.50	3.00	0.50	PH2102

HB100-01

FLEXIBLE MAGNETIC STRIPS

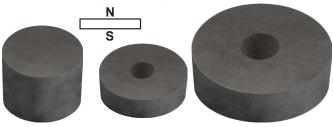
In general, the following tolerances apply to all Magnetic Strips: Thickness: ±0.005", Widths: 0" to $2'' = \pm 0.015''$ or 2'' to $3'' = \pm 0.030''$, Lengths: $\pm 1\%$ or ±0.015" whichever is greater. Temperature Range: operating temperatures -15°F to 160°F (-26°C to 71°C). FEATURES:

- » Conforms to any contour
- » Can be cut, drilled or shaped
- » Available in plain or adhesive back
- **Plain Back Adhesive Back**

Hold - Ibs (kg) per linear foot	Thickness (in)	Width (in)	Length (ft)	Weight (lbs)	Model No. Plain Back	Model No. Adhesive Back
2.0 (0.90)	1/32	1/2	25	0.58	MRN030X0050X025	MRA030X0050X025
2.0 (0.90)	1/32	1/2	100	2.3	MRN030X0050X100	MRA030X0050X100
2.0 (0.90)	1/32	1/2	200	4.6	MRN030X0050X200	MRA030X0050X200
3.0 (1.36)	1/32	3/4	100	3.4	MRN030X0075X100	MRA030X0075X100
3.0 (1.36)	1/32	3/4	200	6.8	MRN030X0075X200	MRA030X0075X200
4.0 (1.81)	1/32	1	25	1.15	MRN030X0100X025	MRA030X0100X025
4.0 (1.81)	1/32	1	50	2.3	MRN030X0100X050	MRA030X0100X050
4.0 (1.81)	1/32	1	100	4.6	MRN030X0100X100	MRA030X0100X100
4.0 (1.81)	1/32	1	200	9.2	MRN030X0100X200	MRA030X0100X200
12.0 (5.44)	1/32	3	25	3.75	MRN030X0300X025	N/A
12.0 (5.44)	1/32	3	100	15.0	MRN030X0300X100	N/A
12.0 (5.44)	1/32	3	200	30.0	MRN030X0300X200	N/A
3.0 (1.36)	1/16	1/2	25	1.1	MRN060X0050X025	MRA060X0050X025
3.0 (1.36)	1/16	1/2	50	2.2	MRN060X0050X050	MRA060X0050X050
3.0 (1.36)	1/16	1/2	100	4.4	MRN060X0050X100	MRA060X0050X100
5.0 (2.26)	1/16	3/4	25	1.65	MRN060X0075X025	MRA060X0075X025
5.0 (2.26)	1/16	3/4	50	3.3	N/A	MRA060X0075X050
5.0 (2.26)	1/16	3/4	100	6.6	MRN060X0075X100	MRA060X0075X100
6.0 (2.72)	1/16	1	25	2.2	MRN060X0100X025	MRA060X0100X025
6.0 (2.72)	1/16	1	50	4.4	MRN060X0100X050	MRA060X0100X050
6.0 (2.72)	1/16	1	100	8.8	MRN060X0100X100	MRA060X0100X100
18.0 (8.16)	1/16	3	100	30.0	MRN060X0300X100	MRA060X0300X100
4.0 (1.81)	1/8	1/2	50	5.0	MRN120X0050X050	MRA120X0050X050
4.0 (1.81)	1/8	1/2	100	10.0	MRN120X0050X100	MRA120X0050X100
6.0 (2.72)	1/8	3/4	50	7.0	MRN120X0075X050	MRA120X0075X050
6.0 (2.72)	1/8	3/4	100	14.0	MRN120X0075X100	MRA120X0075X100
8.0 (3.63)	1/8	1	50	9.5	MRN120X0100X050	MRA120X0100X050
8.0 (3.63)	1/8	1	100	19.0	MRN120X0100X100	MRA120X0100X100
24.0 (10.89)	1/8	3	50	38.0	MRN120X0300X050	MRA120X0300X050
24.0 (10.89)	1/8	3	100	56.0	MRN120X0300X100	MRA120X0300X100

WHITE MAGNETIC SHEETING

Use in your office, manufacturing, air vent covers or inventory for labeling applications or advertising. Measures 1/32" thick and is 24-3/8" wide. Available in 3 lengths. CEATUDES.


 FEATURES: Can be cut, drilled or shaped 	Hold - Ibs (kg) per square foot	Length (ft)	Weight (Ibs)	Model No.	
» Conforms to any contour	85.0 (38.55)	1	1.15	MRS030X2437X001	
» Can be written on	85.0 (38.55)	10	13	MRS030X2437X010	
	85.0 (38.55)	25	31	MRS030X2437X025	

CERAMIC MAGNET MATERIAL

Ceramic magnets are a low cost, high energy material. It is a non-metallic, non-conductive, hard, brittle material compound that can only be cut with a diamond wheel.

CERAMIC FEATURES:

- » Performs best at temperatures below 480°F (249°C)
- » Difficult to grind or drill, cannot be machined utilizing EDM
- » Tolerance ±2% on 0.D., Length & Width. ±.005" on Thickness
- » This material is magnetized through the thickness

	c	Ceramic D	oisc Mate	erial			
Hold - Ibs (kg)	Dia. (in)	Ln. (in) Wt.(lbs)	Grad	le M	lodel No.
4.24 (1.92)	0.875	1.000	0.1	1	5	7/8	BDIAX1C5
	(Ceramic R	ting Mate	rial			
Hold - Ibs (kg)	O.D. (in)	I.D. (in)	Ln. (in)	Wt. (I	bs)	Grade	Model No.
0.36 (0.16)	0.750	0.271	0.250	0.02	22	8	F1409
0.75 (0.34)	1.230	0.885	0.431	0.04	14	8	F1407
3.5 (1.58)	1.723	0.705	0.250	0.08	32	8	F1405
9.5 (4.31)	2.800	1.203	0.590	0.46	66	8	710006
5.5 (2.49)	2.825	1.250	0.330	0.60	00	8	431005
20.5 (9.30)	5.250	2.312	0.750	2.40)8	8	455005

	Cer	amic Rec	tangular	Material		
Hold - Ibs (kg)	Th. (in)	Wd. (in)	Ln. (in)	Wt. (Ibs)	Grade	Model No.
5.5 (2.49)	0.375	0.875	1.875	0.11	8	5C458
4.5 (2.04)	0.250	1	2	0.10	8	250x1x2C8
9.0 (4.08)	0.500	1	2	0.15	8	500x1x2C8
11.0 (4.99)	0.750	1	2	0.25	8	750X1X2C8
12.5 (5.67)	1.000	1	2	0.35	8	1X1X2C8
21.0 (9.52)	1.000	2	2	0.70	8	1X2X2C8
4.5 (2.04)	0.187	4	4	0.75	8	187X4X4C5
8 (3.63)	0.250	4	6	1.00	8	250X4X6C5
10.5 (4.76)	0.312	4	4	0.83	8	312X4X4C5
14.0 (6.35)	0.375	4	4	1.00	8	375X4X4C5
28.0 (12.70)	0.500	4	6	2.00	8	500X4X6C8
40.0 (18.14)	0.750	4	6	3.00	8	750X4X6C5
54.0 (24.49)	1.000	4	6	4.00	8	1X4X6C8

TOLL FREE imi@magnetics.com

17

RAW MAGNET MATERIAL - RARE EARTH

RARE EARTH MAGNET MATERIAL

Rare Earth Neodymium-Iron-Boron (NdFeB) magnets are the highest magnetic strength of any magnet material, high resistance to demagnetization and is ideal for applications requiring maximum strength in a limited area. Rare Earth magnets are usually coated or plated to prevent oxidization.

- » Operates best at temperatures below 180°F (82°C)
- » Tolerance ±0.005" on all dimensions

NOTE: Avoid grinding, as flash fires may occur from rare earth material dust particles. Crystalline structured material is easily chipped, cracked or broken.

CS = Counter Sunk Magnet Material. Screw size is specified in the "CS" column.

O.D. (in)										
J.D. (III)	Ring Ma		Wt (lbc)	CS Screw Size*	Hold - Ibs	35 MgO Grad		42 M Hold - Ibs (kg)	gO Grade Model No.	
0.250	0.060	ength (in) 0.060	Wt. (lbs) \$	SCIEW SIZE	0.2 (0.0		0060NP35	Hola - Ibs (Kg)	wiodel No.	
0.250	0.000	0.060	0.0002		4.2 (1.9	,	0250NP35	-	-	:
0.375	0.136	0.200	0.001		2.0 (0.9		6100NP35	-	-	
0.750	0.125	0.125	0.060		-	,	-	9.63 (4.37)	NE751212NP42	
0.750	0.186	0.125	0.060	#8	-		-	8.60 (3.90)	NE7512CSNP42	
0.875	0.186	0.125	0.070	#8				10.2 (4.62)	NE87125CSNP42	
1.000	0.186	0.125	0.080	#8	-		-	12.6 (5.72)	NE10012CSNP42	
0.875	0.275	0.200	0.050	#0	19.0 (8.6	62) NE87527	- 5200NP35	-	-	-
1.000	0.275	0.200	0.030		-	(L) NE0/02/	-	- 12.39 (5.62)	- NE101912NP42	
1.500	0.125	0.125	0.080		-		-	20.28 (9.20)	NE151212NP42	
				00		05 M. O		, ,		
	iare & Rect (in) Width (ii			CS	at Hold Ibr	35 MgO			MgO Model No.	
0.100	0.250	0.250	0.001) Screw 512	4.25 (1.			old - Ibs (kg)	Model No.	
0.100	0.250	0.250	0.001		4.25 (1.	93) NEU125	2011-30	9.0 (4.08)	- NE010505NP42	
0.125	0.500	1.000	0.009		-			9.0 (4.08) 10.3 (4.67)	NE010505NP42 NE010510NP42	
0.125	0.500	1.000	0.020	#4	-			. ,	NE010510CSNP42	
0.125	0.500	0.750	0.018	#4 #8	-			. ,	NE010510CSNP42 NE017575CSNP42	
0.125	1.000	1.000	0.020	#0	-			18.0 (8.16)	NE011010NP42	
0.125			0.034	#8	-					
	1.000	1.000 1.500	0.034	#8 #8	-			. ,	NE011010CSNP42	
0.125 0.125			0.050	#0	-			16.4 (7.44) 28.0 (12.70)	NE011015CSNP42	
0.125	1.500 1.000	1.500 1.500	0.076		-			· /	NE011515NP42	
0.187	1.000	1.500	0.100		-			. ,	NEO 3/16 RECTNP NE181510NP42	All and a second
0.1875	0.500	2.000	0.100		21.0 (9.	53) NE25502		28.0 (12.70)	NL 101010INF42	
0.250	0.500	0.750	0.070		16.0 (7.	,		_	-	
0.250	1.000	2.000	0.040		30.0 (13			-	-	
0.230	0.250	0.750	0.140		6.0 (2.7			-	-	
0.500	0.230	0.730	0.018		18.0 (8.			-	-	
0.500	1.000	1.000	0.030		45.0 (20			-	-	
			5.000		(20					
	rth Cylindri			35 Mg			MgO		52 MgO	
	Length (in)	Wt. (lbs)	Hold - Ik		Model No.	Hold - Ibs (kg)		o. Hold - Ibs		
0.120	0.060	0.0002	0.2 (0	,	E1206NP35	-	-	-	-	
0.120	0.250	0.0002	0.3 (0	,	E1225NP35	-	-	-	-	0
0.120	0.500	0.0004	0.6 (0		E1250NP35	-	-	-	-	
0.187	0.060	0.0004 0.001	0.6 (0	,	E1806NP35	-	-	-	-	
0.220 0.220	0.100		1 0 /0	(15) N						
0.220	0.250		1.0 (0		E2210NP35		-	-		
0 220	0.250	0.003	1.5 (0	.68) N	E2225NP35	-	-	-	-	
0.220	0.500	0.003 0.007	1.5 (0 1.8 (0	.68) N .81) N	E2225NP35 E2250NP35	-	-	-	-	
0.250	0.500 0.100	0.003 0.007 0.001	1.5 (0 1.8 (0 1.0 (0	.68) N .81) N .45) N	E2225NP35 E2250NP35 E2510NP35		- - - - NE2512NP	-		
0.250 0.250	0.500 0.100 0.125	0.003 0.007 0.001 0.002	1.5 (0 1.8 (0 1.0 (0 1.2 (0	.68) N 0.81) N 0.45) N 0.54) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35	-	- - - NE2512NP -	-		
0.250 0.250 0.250	0.500 0.100 0.125 0.187	0.003 0.007 0.001 0.002 0.002	1.5 (0 1.8 (0 1.0 (0 1.2 (0 1.5 (0	.68) N 0.81) N 0.45) N 0.54) N 0.68) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2518NP35	- - 2.3 (1.04) -	-	- - - 242 - -		
0.250 0.250	0.500 0.100 0.125	0.003 0.007 0.001 0.002	1.5 (0 1.8 (0 1.0 (0 1.2 (0	0.68) N 0.81) N 0.45) N 0.54) N 0.68) N 0.77) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35		- - - NE2512NP - NE2520NF NE2525NF	- - 242 - - 242 -		
0.250 0.250 0.250 0.250	0.500 0.100 0.125 0.187 0.200	0.003 0.007 0.001 0.002 0.002 0.003	1.5 (0 1.8 (0 1.0 (0 1.2 (0 1.5 (0 1.7 (0	0.68) N 0.81) N 0.45) N 0.54) N 0.68) N 0.68) N 0.77) N 0.81) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2518NP35 E2520NP35	- - 2.3 (1.04) - 3.07 (1.39)	- NE2520NF	- - - - - - - - - - - - - - - - - - -		
0.250 0.250 0.250 0.250 0.250	0.500 0.100 0.125 0.187 0.200 0.250	0.003 0.007 0.001 0.002 0.002 0.003 0.003	1.5 (0 1.8 (0 1.0 (0 1.2 (0 1.5 (0 1.7 (0 1.8 (0	.68) N .81) N .45) N .54) N .68) N .68) N .68) N .68) N .68) N .77) N .81) N .95) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2518NP35 E2520NP35 E2520NP35 E2525NP35	- - 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52)	- NE2520NF NE2525NF	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.250	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.007 0.006 0.006	1.5 (0 1.8 (0 1.0 (0 1.2 (0 1.5 (0 1.7 (0 1.8 (0 2.1 (0	.68) N .81) N .45) N .54) N .68) N .77) N .81) N .81) N .55) N .59) N .40) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2518NP35 E2520NP35 E2525NP35 E2525NP35 E3106NP35 E3225NP35	- - 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52)	- NE2520NF NE2525NF	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.250 0.060	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.007 0.006 0.006 0.002	1.5 (0 1.8 (0 1.0 (0 1.2 (0 1.5 (0 1.7 (0 1.8 (0 2.1 (0 1.3 (0	.68) N .81) N .45) N .54) N .68) N .68) N .77) N .81) N .95) N .59) N .40) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2518NP35 E2520NP35 E2525NP35 E3106NP35 E3225NP35 E3225NP35 E3206NP35	- - 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52)	- NE2520NF NE2525NF	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.250 0.060 0.100	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.007 0.006 0.006 0.002 0.003	1.5 (0 1.8 (0 1.2 (0 1.5 (0 1.7 (0 1.8 (0 2.1 (0 3.1 (1 1.6 (0 2.0 (0	.68) N .81) N .45) N .54) N .68) N .77) N .81) N .55) N .59) N .40) N .73) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2518NP35 E2520NP35 E2525NP35 E3106NP35 E3225NP35 E3225NP35 E3276NP35 E3710NP35	- - 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52)	- NE2520NF NE2525NF	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.250 0.060 0.250 0.060 0.100 0.125	0.003 0.007 0.002 0.002 0.003 0.003 0.003 0.007 0.006 0.006 0.002 0.003 0.004	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.0 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \\ 1.3 \ (0 \\ 3.1 \ (1 \\ 1.6 \ (0 \\ 2.0 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.6 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ ($.68) N .81) N .45) N .54) N .68) N .68) N .68) N .81) N .81) N .95) N .40) N .73) N .90) N .18) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2525NP35 E3106NP35 E3225NP35 E3706NP35 E3710NP35 E3712NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - -	- NE2520NF NE2525NF	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.250 0.060 0.100 0.125 0.187	0.003 0.007 0.002 0.002 0.003 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.004	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.0 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \\ 2.0 \ (0 \\ 2.0 \ (0 \\ 2.6 \ (1 \\ 4.5 \ (2 \\ 4.5 \ (2 \\ 1.3 \\ 1.6 \ (0 \\ 2.6 \ (1 \\ 1.5 \ (2 \\ 1.5 \\ 1.5 \\ 1.5 \ (2 \\ 1.5 \\ $.68) N .81) N .84) N .54) N .68) N .68) N .68) N .81) N .68) N .68) N .68) N .68) N .95) N .59) N .73) N .90) N .18) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2518NP35 E2525NP35 E3255NP35 E3206NP35 E3225NP35 E3706NP35 E3710NP35 E3712NP35 E3718NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - -	- NE2520NF NE2525NF	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.350 0.310 0.320 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.006 0.006	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.2 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.8 \ (0 \\ 2.1 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \ (0 \\ 2.1 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ ($.68) N .81) N .45) N .54) N .54) N .68) N .77) N .81) N .95) N .59) N .73) N .90) N .18) N .04) N .04) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2520NP35 E2520NP35 E2550NP35 E3106NP35 E3106NP35 E3710NP35 E3712NP35 E3720NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - -	- NE2520NF NE2525NF NE2550NF - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.250 0.060 0.250 0.100 0.125 0.187 0.200 0.250	0.003 0.007 0.001 0.002 0.003 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.006 0.006	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.0 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.8 \ (0 \\ 2.1 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \ (0 \\ 2.1 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ ($.68) N .81) N .84) N .54) N .54) N .68) N .77) N .81) N .95) N .59) N .73) N .90) N .04) N .04) N .04) N .04) N .04) N .04) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3710NP35 E3710NP35 E3712NP35 E372NP35 E372NP35 E372NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	- NE2520NF NE2525NF - - - - - - - - - - - - - - - - NE3725NF	- - - - - - - - - - - - - - - - - - -	- - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.250	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.006 0.006 0.006	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.0 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.8 \ (0 \\ 2.1 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \\ 2.0 \ (0 \\ 2.6 \ (1 \\ 4.5 \ (2 \\ 4.5 \ (2 \\ 4.5 \ (2 \\ 4.5 \ (2 \\ 5.7 \ (2 \ (2 \ (2 \ (2 \ (2 \ (2 \ (2 \ ($.68) N .81) N .84) N .54) N .54) N .68) N .77) N .81) N .55) N .55) N .59) N .73) N .90) N .04) N .04) N .04) N .08) N .58) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3225NP35 E3710NP35 E3712NP35 E3712NP35 E3720NP35 E3725NP35 E3737NP35	- 2.3 (1.04) - 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	- NE2520NF NE2525NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.320 0.375 0.375 0.375 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.250 0.375 0.500	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.0011 0.015	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.0 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.8 \ (0 \\ 2.1 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \\ 3.1 \ (1 \\ 1.6 \ (0 \\ 2.0 \ (0 \\ 2.6 \ (1 \\ 4.5 \ (2 \\ 4.5 \ (2 \\ 4.6 \ (2 \\ 5.7 \ (2 \\ 6.7 \ (3 \ (3 \ (3 \ (3 \ (3 \ (3 \ (3 \ ($.68) N .81) N .81) N .45) N .54) N .68) N .68) N .67) N .81) N .59) N .59) N .40) N .73) N .73) N .04) N .058) N .04) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2525NP35 E3255NP35 E3225NP35 E3710NP35 E3712NP35 E3712NP35 E3720NP35 E3725NP35 E3737NP35 E3750NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	- NE2520NF NE2525NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.250 0.375 0.500 0.060	0.003 0.007 0.002 0.002 0.003 0.003 0.003 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.006 0.006 0.006 0.007 0.011 0.015 0.003	$\begin{array}{c} 1.5 (0 \\ 1.8 (0 \\ 1.0 (0 \\ 1.2 (0 \\ 1.5 (0 \\ 1.7 (0 \\ 1.3 (0 \\ 2.1 (0 \\ 1.3 (0 \\ 2.1 (0 \\ 2.0 (0 \\ 2.6 (1 \\ 4.5 (2 \\ 4.5 (2 \\ 4.5 (2 \\ 4.5 (2 \\ 5.7 (2 \\ 5.7 (3 \\ 3.0 (1 \\ 3.0 ($.68) N .81) N .81) N .45) N .54) N .54) N .68) N .68) N .81) N .95) N .59) N .40) N .73) N .90) N .18) N .04) N .04) N .04) N .04) N .04) N .04) N .58) N .04) N .04) N .36) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2520NP35 E2525NP35 E3255NP35 E3225NP35 E3706NP35 E3710NP35 E3712NP35 E3712NP35 E3725NP35 E3725NP35 E3750NP35 E3750NP35 E3750NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - 6.86 (3.11) 7.96 (3.61) 8.5 (3.86) -	- NE2520NF NE2525NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.250 0.375 0.500 0.060 0.125	0.003 0.007 0.001 0.002 0.003 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.006 0.006 0.007 0.011 0.015 0.003 0.007	$\begin{array}{c} 1.5 (0 \\ 1.8 (0 \\ 1.0 (0 \\ 1.2 (0 \\ 1.5 (0 \\ 1.7 (0 \\ 1.8 (0 \\ 2.1 (0 \\ 1.3 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.1 (0 \\ 2.0 (0 \\ 2.6 (1 \\ 4.5 (2 \\ 4.6 (2 \\ 5.7 (2 \\ 4.6 (2 \\ 5.7 (2 \\ 6.7 (3 \\ 3.0 (1 \\ 4.0 (1 \\ 4.0 (1 \\ 4.0 (1 \\ 1.0 \\$.68) N .81) N .45) N .54) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .73) N .90) N .04) N .81) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2520NP35 E2525NP35 E3106NP35 E3106NP35 E3706NP35 E3710NP35 E3712NP35 E3720NP35 E3725NP35 E3737NP35 E3750NP35 E306NP35 E5006NP35 E50012NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	- NE2520NF NE2525NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.250 0.260 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.187	0.003 0.007 0.002 0.002 0.003 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.010	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.0 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.8 \ (0 \\ 2.1 \ (0 \\ 1.1 \ (0 \ (0 \\ 1.1 \ (0 \ (0 \\ 1.1 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ ($.68) N .81) N .84) N .54) N .68) N .68) N .677) N .81) N .95) N .59) N .73) N .04) N .36) N .36) N .36) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3710NP35 E3710NP35 E3712NP35 E3725NP35 E3725NP35 E3737NP35 E3737NP35 E3500P35 E5006NP35 E5012NP35	- 2.3 (1.04) - 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	NE2520NF NE2525NF NE2550NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.310 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.060 0.100 0.125 0.187 0.200 0.250000000000	0.003 0.007 0.002 0.002 0.003 0.003 0.006 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.010 0.010	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.2 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.8 \ (0 \\ 2.1 \ (0 \ (0 \\ 2.1 \ (0 \ (0 \\ 2.1 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ ($.68) N .81) N .84) N .54) N .54) N .54) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .60) N .73) N .90) N .04) N .04) N .04) N .04) N .04) N .36) N .36) N .58) N .72) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3225NP35 E3710NP35 E3712NP35 E3712NP35 E3725NP35 E3725NP35 E3737NP35 E3737NP35 E5006NP35 E5012NP35 E5012NP35 E5012NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	- NE2520NF NE2550NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.310 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.375 0.500 0.060 0.125 0.187 0.200	0.003 0.007 0.001 0.002 0.003 0.003 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.011 0.010 0.010 0.013	$\begin{array}{c} 1.5 \ (0 \\ 1.8 \ (0 \\ 1.0 \ (0 \\ 1.2 \ (0 \\ 1.5 \ (0 \\ 1.7 \ (0 \\ 1.8 \ (0 \\ 2.1 \ (0 \\ 1.3 \ (0 \\ 2.1 \ (0 \\ 1.5 \ (0 \\ 2.1 \ (0 \\ 1.5 \ (0 \\ 2.1 \ (0 \\ 1.5 \ (0 \\ 2.1 \ (0 \\ 1.5 \ (0 \\ 2.1 \ (0 \\ 1.5 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ (0 \ ($.68) N .81) N .81) N .85) N .54) N .68) N .67) N .81) N .81) N .59) N .59) N .59) N .73) N .90) N .18) N .04) N .058) N .04) N .81) N .55) N .72) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2520NP35 E2525NP35 E2525NP35 E3106NP35 E3725NP35 E3712NP35 E3712NP35 E3712NP35 E3725NP35 E3725NP35 E3750NP35 E5012NP35 E5018NP35 E5025NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	- NE2520NF NE2525NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.375 0.350000000000	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.187 0.250 0.375	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.007 0.006 0.002 0.003 0.004 0.006 0.006 0.006 0.004 0.006 0.007 0.011 0.015 0.003 0.007 0.010 0.010 0.013 0.020	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.8 (0\\ 2.1 (0\\ 1.3 (0\\ 2.1 (0\\ 1.3 (0\\ 2.1 (0\\ 2.0 (0\\ 2.6 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.6 (2\\ 5.7 (2\\ 4.6 (2\\ 5.7 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.6 (2\\ 6.9 (2\\ 8.9 (4\\$.68) N .81) N .81) N .45) N .54) N .54) N .68) N .68) N .67) N .81) N .95) N .40) N .73) N .73) N .740) N .04) N .04) N .04) N .04) N .04) N .04) N .058) N .04) N .558) N .72) N .94) N .03) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2525NP35 E2525NP35 E3206NP35 E3706NP35 E3712NP35 E3712NP35 E3712NP35 E3725NP35 E3725NP35 E3750NP35 E5006NP35 E5012NP35 E502NP35 E5022NP35 E50237NP35	- 2.3 (1.04) - 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.3500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.5000 0.5000	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.375 0.500 0.250 0.375 0.200	0.003 0.007 0.001 0.002 0.003 0.003 0.007 0.006 0.002 0.003 0.004 0.006 0.006 0.006 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.010 0.010 0.010 0.013 0.020 0.026	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.8 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.6 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.6 (2\\ 6.5 (2\\ 6.5 (2\\ 8.9 (4\\ 11.2 (5\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2\\ 1.2 (2\\ 1.2 (5\\ 1.2 (2$.68) N .81) N .84) N .45) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .73) N .90) N .73) N .04) N .05) N .04) N .68) N .68) N .68) N .63) N .03) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E252NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3706NP35 E3710NP35 E3712NP35 E3720NP35 E3725NP35 E3737NP35 E5006NP35 E5012NP35 E5025NP35 E5032NP35 E5032NP35 E5032NP35 E5032NP35	- 2.3 (1.04) - 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.375	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.250 0.250 0.260 0.250 0.250 0.375 0.500 0.060 0.125 0.375 0.500 0.250 0.250 0.375 0.250 0.050000000000	0.003 0.007 0.001 0.002 0.003 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.011 0.013 0.020 0.026 0.020	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.8 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 3.1 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.6 (2\\ 5.7 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.0 (2\\ 6.5 (2\\ 6.8 (4\\ 4.1 (1, 2, (3, 2, 1))))))))))$.68) N .81) N .81) N .45) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .73) N .90) N .73) N .04) N .058) N .04) N .36) N .03) N .03) N .03) N .03) N .03) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3710NP35 E3710NP35 E3712NP35 E3725NP35 E3737NP35 E3737NP35 E5006NP35 E5012NP35 E5025NP35 E5025NP35 E5037NP35 E5037NP35 E5037NP35 E5037NP35 E5032NP35 E5037NP35	- 2.3 (1.04) - 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -		$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.310 0.375 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.187 0.200 0.250 0.375 0.500 0.375 0.500 0.375	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.011 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.8 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 5.7 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.0 (2\\ 6.5 (2\\ 8.9 (4\\ 11.2 (1\\ 3.2 (1\\ -2, 2))))) \end{array}$.68) N .81) N .81) N .81) N .54) N .54) N .68) N .77) N .81) N .59) N .59) N .59) N .59) N .60) N .73) N .90) N .18) N .04) N .04) N .04) N .058) N .36) N .58) N .72) N .03) N .508) N .45) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3250NP35 E3706NP35 E3710NP35 E3710NP35 E3712NP35 E3725NP35 E3725NP35 E5012NP35 E5012NP35 E5012NP35 E5022NP35 E5025NP35 E5025NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	- NE2520NF NE2525NF NE2550NF - - - - - - - - - - - - - - - - - - -	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $		
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.500 0.375 0.5000 0.5000 0.5000 0.500000000	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.250 0.375 0.200 0.250 0.375 0.200 0.250 0.375 0.200 0.250 0.375 0.200	0.003 0.007 0.001 0.002 0.003 0.003 0.007 0.006 0.006 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.011 0.015 0.003 0.007 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.060	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.8 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.6 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.0 (2\\ 6.5 (2\\ 8.9 (4\\ 11.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (5\\ 1.2 (5$.68) N .81) N .81) N .81) N .54) N .54) N .68) N .77) N .81) N .59) N .59) N .59) N .77) N .95) N .73) N .90) N .18) N .04) N .04) N .04) N .04) N .04) N .04) N .05) N .04) N .05) N .94) N .94) N .45) N .45) N .45) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2520NP35 E2525NP35 E2525NP35 E3106NP35 E3725NP35 E3710NP35 E3712NP35 E3721NP35 E3720NP35 E3725NP35 E5018NP35 E5018NP35 E5025NP35 E5025NP35 E5037NP35 E5025NP35 E5037NP35 E5037NP35 E503NP35 E503NP35 E503NP35 E503NP35 E503NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35 E5050NP35	- 2.3 (1.04) - 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -		$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.500 0.375 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.550 0.755 0.375 0.375 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.755 0.375 0.375 0.500 0.500 0.500 0.500 0.750 0.755 0.7550 0.7550 0.7550 0.7550 0.7550 0.75500 0.750000000000	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.187 0.200 0.250 0.375 0.500 0.250 0.375 0.500	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.007 0.006 0.006 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.011 0.015 0.003 0.007 0.011 0.015 0.003 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.8 (0\\ 2.1 (0\\ 1.3 (0\\ 2.1 (0\\ 1.3 (0\\ 2.0 (0\\ 2.6 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 3.2 (1\\ 1.2 (5\\ 1.5 (5\\$.68) N .81) N .81) N .81) N .54) N .68) N .68) N .67) N .81) N .59) N .59) N .59) N .40) N .77) N .90) N .04) N .058) N .04) N .58) N .58) N .772) N .764) N .03) N .58) N .58) N .567) N .674) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2525NP35 E2525NP35 E3106NP35 E3725NP35 E3712NP35 E3712NP35 E3712NP35 E3725NP35 E5018NP35 E5018NP35 E502NP35 E502NP35 E502NP35 E5050NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	NE2520NF NE2525NF NE2550NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.500 0.375 0.5000 0.5000 0.5000 0.500000000	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.250 0.060 0.100 0.250 0.375 0.500 0.250 0.375 0.500 0.250 0.125 0.187 0.200 0.250 0.375 0.500 0.375 0.500	0.003 0.007 0.001 0.002 0.003 0.003 0.007 0.006 0.002 0.003 0.004 0.006 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.015 0.003 0.007 0.010 0.013 0.020 0.020 0.020 0.026 0.020	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.3 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.6 (1\\ 4.5 (2\\ 4.6 (2\\ 5.7 (2\\ 6.0 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.0 (2\\ 6.5 (2\\ 6.8 (2\\ 8.9 (4\\ 11.2 (5\\ 3.2 (1\\ 12.5 (6\\ 3.2 (1\\ 12.5 (6\\ 12.5 (0\\ 20.0 (5\\ 20$.68) N .81) N .81) N .45) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .59) N .73) N .90) N .73) N .04) N .058) N .04) N .058) N .03) N .03) N .03) N .03) N .05.94) N .07) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3706NP35 E3710NP35 E3712NP35 E3725NP35 E3725NP35 E5006NP35 E5012NP35 E5025NP35 E5037NP35 E5037NP35 E5032NP35 E5032NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.750 0.750 0.750	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.187 0.200 0.250 0.375 0.500 0.250 0.375 0.500 0.125 0.500	0.003 0.007 0.002 0.002 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.010 0.010 0.010 0.013 0.020 0.026 0.026 0.030 0.045	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.3 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.6 (2\\ 5.7 (2\\ 6.0 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.0 (2\\ 8.9 (4\\ 11.2 (6\\ 3.2 (1\\ 1.5 (6\\ 115.3 (6\\ 22.0 (5\\ $.68) N .81) N .84) N .54) N .54) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .73) N .90) N .73) N .04) N .058) N .04) N .058) N .030) N .030) N .045) N .057) N .067) N .070) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3710NP35 E3710NP35 E3712NP35 E3725NP35 E3725NP35 E5006NP35 E5020NP35 E5020NP35 E5025NP35 E5037NP35 E5037NP35 E5037NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	NE2520NF NE2525NF NE2550NF NE2550NF NE2550NF NE3725NF NE3725NF NE3725NF NE5012NF NE5012NF NE5020NF NE5020NF NE5020NF NE5050NF NE5050NF NE7506NF NE7512NF NE7512NF NE7512NF	- - - - - - - - - - - - - -		
0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.500 0.500 0.500 0.750	0.500 0.100 0.125 0.187 0.200 0.250 0.060 0.250 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.250 0.375 0.500 0.250 0.375 0.500 0.060 0.125 0.187 0.200 0.250 0.375 0.500 0.060	0.003 0.007 0.001 0.002 0.003 0.003 0.003 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.011 0.015 0.007 0.010 0.010 0.010 0.010 0.020 0.026 0.020 0.026 0.020 0.060 0.026 0.020	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.3 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.6 (1\\ 4.5 (2\\ 4.6 (2\\ 5.7 (2\\ 6.0 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.0 (2\\ 6.5 (2\\ 6.8 (2\\ 8.9 (4\\ 11.2 (5\\ 3.2 (1\\ 12.5 (6\\ 3.2 (1\\ 12.5 (6\\ 12.5 (0\\ 20.0 (5\\ 20$.68) N .81) N .84) N .54) N .54) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .73) N .90) N .73) N .04) N .058) N .04) N .058) N .030) N .030) N .045) N .057) N .067) N .070) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3706NP35 E3710NP35 E3712NP35 E3725NP35 E3725NP35 E5006NP35 E5012NP35 E5025NP35 E5037NP35 E5037NP35 E5032NP35 E5032NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - -	- NE2520NF NE2525NF - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -		
0.250 0.250 0.250 0.250 0.250 0.310 0.320 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.750 0.750 0.750	0.500 0.100 0.125 0.187 0.200 0.250 0.500 0.060 0.100 0.125 0.187 0.200 0.250 0.375 0.500 0.060 0.125 0.187 0.200 0.250 0.375 0.500 0.250 0.375 0.500 0.125 0.500	0.003 0.007 0.002 0.002 0.003 0.007 0.006 0.006 0.002 0.003 0.004 0.006 0.006 0.007 0.011 0.015 0.003 0.007 0.010 0.010 0.010 0.013 0.020 0.026 0.026 0.030 0.045	$\begin{array}{c} 1.5 (0\\ 1.8 (0\\ 1.0 (0\\ 1.2 (0\\ 1.5 (0\\ 1.7 (0\\ 1.3 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.1 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (0\\ 2.0 (1\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.5 (2\\ 4.6 (2\\ 5.7 (2\\ 6.0 (2\\ 6.7 (3\\ 3.0 (1\\ 4.0 (1\\ 5.7 (2\\ 6.0 (2\\ 8.9 (4\\ 11.2 (6\\ 3.2 (1\\ 1.5 (6\\ 115.3 (6\\ 22.0 (5\\ $.68) N .81) N .84) N .54) N .54) N .54) N .68) N .77) N .81) N .95) N .59) N .59) N .73) N .90) N .73) N .04) N .058) N .04) N .058) N .030) N .030) N .045) N .057) N .067) N .070) N	E2225NP35 E2250NP35 E2510NP35 E2512NP35 E2512NP35 E2520NP35 E2520NP35 E3106NP35 E3106NP35 E3710NP35 E3710NP35 E3712NP35 E3725NP35 E3725NP35 E5006NP35 E5020NP35 E5020NP35 E5025NP35 E5037NP35 E5037NP35 E5037NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35 E7525NP35	- 2.3 (1.04) - 3.07 (1.39) 3.35 (1.52) 3.87 (1.76) - - - - - - - - - - - - - - - - - - -	NE2520NF NE2525NF NE2550NF NE2550NF NE2550NF NE3725NF NE3725NF NE3725NF NE5012NF NE5012NF NE5020NF NE5020NF NE5020NF NE5050NF NE5050NF NE7506NF NE7512NF NE7512NF NE7512NF	- - - - - - - - - - - - - -		

MULTI-POLE ENCODED MAGNETS

MAX-ATTACH® - SMARTMAG® ENCODED MAGNET MATERIAL

Max-Attach® SmartMag® magnets are Rare Earth Neodymium-Iron-Boron multi-pole encoded magnets that contain small magnetic poles encoded into a single face of raw magnet material to produce superior attachment force that cannot be achieved with conventionally magnetized magnet material. Maximum temperature is 180°F (82°C). They cannot be machined.

Some models available with 3M VHB (Very High Bond) adhesive backing for placement on nonferrous surfaces.

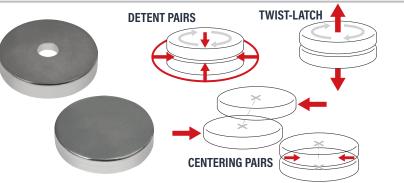
1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP12512CSP2N42 - 1.500 0.125 0.125 0.059 67.3 (30.53) CMP151212P2N42 CMP151212P2ADF 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 - Max-Attach® Rectangle	SmartMag [®] Max-Attach [®] Disc										
0.500 0.125 0.007 7.7 (1.04) CMP5012P1N35 - 0.500 0.187 0.037 9.3 (4.22) CMP5018P2N35 - 0.500 0.125 0.007 8.8 (3.99) CMP5012P1N42 - 0.500 0.187 0.037 10.5 (4.76) CMP5018P2N42 - 0.500 0.187 0.037 10.5 (4.76) CMP5018P2N42 - 0.750 0.062 0.007 15.3 (6.94) CMP7506P1N42 CMP7506P1ADH 0.750 0.125 0.013 16.5 (7.48) CMP10006P1N42 CMP710018P1ADH 1.000 0.062 0.013 16.5 (7.48) CMP10012P1N42 CMP10018P2ADH 1.000 0.125 0.027 37.3 (16.92) CMP10018P2N42 CMP10018P2ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.020 77.0 (34.93 CMP7512P2N42 - 0.750 0.125 0.124 16.3 (7.39) CMP751212P2N42 - <th>(in)</th> <th>(in)</th> <th>(in) (II</th> <th>bš)</th> <th>lbs (l</th> <th>(g)</th> <th></th> <th>Adhesive Back</th>	(in)	(in)	(in) (II	bš)	lbs (l	(g)		Adhesive Back			
0.500 0.187 0.037 9.3 (4.22) CMP5018P2N35 - 0.500 0.125 0.007 8.8 (3.99) CMP5012P1N42 - 0.500 0.187 0.037 10.5 (4.76) CMP5018P2N42 - 0.750 0.062 0.007 15.3 (6.94) CMP7506P1N42 CMP7506P1ADH 0.750 0.125 0.015 18.0 (8.16) CMP7512P1N42 CMP7512P2ADH 1.000 0.062 0.013 16.5 (7.48) CMP10006P1N42 CMP10006P1ADH 1.000 0.125 0.027 37.3 (16.92) CMP10012P1N42 CMP10012P1ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH 1.500 0.125 0.060 77.0 (34.93 CMP751212P2N42 - 0.750 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.186 0.125 0.020 #8 10.0 <td>0.500</td> <td>0.062</td> <td>0.062 0.0</td> <td>004</td> <td>4.9 (2</td> <td>.22) C</td> <td>MP5006P2N52</td> <td>CMP5006P2ADH</td>	0.500	0.062	0.062 0.0	004	4.9 (2	.22) C	MP5006P2N52	CMP5006P2ADH			
0.500 0.125 0.007 8.8 (3.99) CMP5012P1N42 - 0.500 0.187 0.037 10.5 (4.76) CMP5018P2N42 - 0.750 0.062 0.007 15.3 (6.94) CMP7506P1N42 CMP7506P1ADH 0.750 0.125 0.015 18.0 (8.16) CMP7512P1N42 CMP7512P2ADH 1.000 0.062 0.013 16.5 (7.48) CMP10006P1N42 CMP10012P1ADH 1.000 0.125 0.027 37.3 (16.92) CMP10012P1N42 CMP10012P1ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH 1.500 0.125 0.125 0.014 16.3 (7.39) CMP7512P2N42 - 0.750 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 0.750 0.186 0.125 0.202 #8 14.00 CMP8712CSP2N42 - 0.750		0.125	0.125 0.0	007	7.7 (1.	04) C	MP5012P1N35	-			
0.500 0.187 0.037 10.5 (4.76) CMP5018P2N42 - 0.750 0.062 0.007 15.3 (6.94) CMP7506P1N42 CMP7506P1ADH 0.750 0.125 0.015 18.0 (8.16) CMP7512P1N42 CMP7512P2ADH 1.000 0.062 0.013 16.5 (7.48) CMP10006P1N42 CMP10010P1ADH 1.000 0.125 0.027 37.3 (16.92) CMP10012P1N42 CMP10018P2ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH 1.500 0.125 0.125 0.014 16.3 (7.39) CMP7512P1N2 - 0.750 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 0.750 0.186 0.125 0.026 33.2 (15.06) CMP101912P2N42 - 1.000	0.500	0.187	0.187 0.0	037	9.3 (4	.22) C	MP5018P2N35	-			
0.750 0.062 0.007 15.3 (6.94) CMP7506P1N42 CMP7506P1ADH 0.750 0.125 0.015 18.0 (8.16) CMP7512P1N42 CMP7512P2ADH 1.000 0.062 0.013 16.5 (7.48) CMP10006P1N42 CMP10006P1ADH 1.000 0.125 0.027 37.3 (16.92) CMP10012P1N42 CMP10012P1ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH Max-Attach® Ring O.D. I.D. Height (in) Weight (ibs) Hold - Ibs (kg) Model No. Model No. with Adhesive Back 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.186 0.125 0.011 #8 11.0 (4.99) CMP7512CSP2N42 - 0.750 0.186 0.125 0.202 #8 14.0 (6.35) CMP312CSP2N42 - 1.000 0.186	0.500	0.125	0.125 0.0	007	8.8 (3	.99) C	MP5012P1N42	-			
0.750 0.125 0.015 18.0 (8.16) CMP7512P1N42 CMP7512P2ADH 1.000 0.062 0.013 16.5 (7.48) CMP10006P1N42 CMP10006P1ADH 1.000 0.125 0.027 37.3 (16.92) CMP10012P1N42 CMP10012P1ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH Max-Attach® Ring 0.750 0.125 0.014 16.3 (7.39) Model No. Model No. with Adhesive Back 0.750 0.125 0.011 #8 11.0 (4.99) CMP751212P2N42 - 0.750 0.125 0.011 #8 11.0 (4.99) CMP7512CSP2N42 - 0.750 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 0.875 0.186 0.125 0.026 33.2 (15.06) CMP10112P2N42 CMP101912P2AD4 1.000 0.186 0.125 0.026	0.500	0.187	0.187 0.0	037			MP5018P2N42	-			
1.000 0.062 0.013 16.5 (7.48) CMP10006P1N42 CMP10006P1ADH 1.000 0.125 0.027 37.3 (16.92) CMP10012P1N42 CMP10012P1ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH Max-Attach® Ring Model No. Model No. Model No. with Adhesive Back 0.750 0.125 0.125 0.011 #8 11.0 (4.99) CMP751212P2N42 - 0.750 0.125 0.125 0.020 #8 14.0 (6.35) CMP87512CSP2N42 - 0.750 0.186 0.125 0.202 #8 14.0 (6.35) CMP10112CSP2N42 - 1.000 0.186 0.125 0.020 #8 30.0 (13.60) CMP10112CSP2N42 - 1.000 0.186 0.125 0.020 #8 30.0 (13.60) CMP101912P2N42 CMP101912P2ADH 1.500 0.125	0.750	0.062	0.062 0.0	007	15.3 (6	6.94) C	MP7506P1N42	CMP7506P1ADH			
1.000 0.125 0.027 37.3 (16.92) CMP10012P1N42 CMP10012P1ADH 1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH Max-Attach® Ring Model No. Model No. Model No. with Adhesive Back 0.750 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.125 0.011 #8 11.0 (4.99) CMP7512CSP2N42 - 0.750 0.186 0.125 0.020 #8 14.0 (6.35) CMP10012CSP2N42 - 0.750 0.186 0.125 0.206 33.2 (15.06) CMP10112CSP2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 - 1.000 0.186 0.125 0.040 #8 42.0 (19.05) CMP151212P2N42 - 1.500 0.125 0.059 67.3 (30.53) CMP151212P2N42 - 1.500 0.125 0.128 119.0 (53.98)	0.750	0.125	0.125 0.0	015	18.0 (8	3.16) C	MP7512P1N42	CMP7512P2ADH			
1.000 0.187 0.040 38.4 (17.42) CMP10018P2N42 CMP10018P2ADH 1.500 0.125 0.060 77.0 (34.93 CMP15012P1N42 CMP15012P1ADH Max-Attach® Ring Model No. Model No. with Adhesive Back 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.125 0.125 0.020 #8 11.0 (4.99) CMP7512CSP2N42 - 0.750 0.186 0.125 0.020 #8 14.0 (6.35) CMP80712CSP2N42 - 1.000 0.190 0.125 0.020 #8 30.0 (13.60) CMP101912P2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 - 1.000 0.190 0.125 0.040 #8 42.0 (19.05) CMP101912P2N42 - 1.500 0.125 0.059 67.3	1.000	0.062	0.062 0.0	013	16.5 (7	7.48) CI	VP10006P1N42	CMP10006P1ADH			
1.500 0.125 0.060 77.0 (34.93) CMP15012P1N42 CMP15012P1ADH Max-Attach® Ring O.D. I.D. Height (in) Weight (ibs) Hold - Model No. Model No. with Adhesive Back 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.186 0.125 0.011 #8 11.0 (4.99) CMP7512CSP2N42 - 0.750 0.186 0.125 0.020 #8 14.0 (6.35) CMP1012CSP2N42 - 1.000 0.186 0.125 0.020 #8 30.0 (13.60) CMP101912P2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 - - 1.250 0.186 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADH 1.250 0.186 0.125 0.059 67.3 (30.53) CMP151212P2N42 - 1.500 0.125 0.128 119.0 (53.98) CMP208718P2N42	1.000	0.125	0.125 0.0	027	37.3 (10	6.92) CI	MP10012P1N42	CMP10012P1ADH			
O.D. (in) I.D. (in) Height (ibs) Weight (lbs) Hold - CS Hold - Ibs (kg) Model No. Model No. Model No. with Adhesive Back 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.186 0.125 0.011 #8 11.0 (4.99) CMP751212P2N42 - 0.875 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 1.000 0.186 0.125 0.800 #8 30.0 (13.60) CMP101912P2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 - 1.250 0.186 0.125 0.026 33.2 (15.06) CMP101912P2N42 - 1.500 0.125 0.026 67.3 (30.53) CMP151212P2N42 - 1.500 0.125 0.125 0.59 67.3 (30.53) CMP151212P2N42 - 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 -		0.187					VP10018P2N42				
O.D. (in) I.D. (in) Height (in) Weight (lbs) Hold - CS Hold - Ibs (kg) Model No. Model No. with Adhesive Back 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.186 0.125 0.001 #8 11.0 (4.99) CMP7512CSP2N42 - 0.875 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 1.000 0.190 0.125 0.800 #8 30.0 (13.60) CMP101912CSP2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADF 1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP151212P2N42 - 1.500 0.125 0.125 0.59 67.3 (30.53) CMP151212P2N42 CMP151212P2ADF 2.000 0.875 0.187 0.128 119.0 (53.98)	1.500	0.125	0.125 0.0	060	77.0 (3	4.93 CI	MP15012P1N42	CMP15012P1ADH			
O.D. (in) I.D. (in) Height (in) Weight (lbs) Hold - CS Hold - Ibs (kg) Model No. Model No. with Adhesive Back 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.186 0.125 0.001 #8 11.0 (4.99) CMP7512CSP2N42 - 0.875 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 1.000 0.190 0.125 0.800 #8 30.0 (13.60) CMP101912CSP2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADF 1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP151212P2N42 - 1.500 0.125 0.125 0.59 67.3 (30.53) CMP151212P2N42 CMP151212P2ADF 2.000 0.875 0.187 0.128 119.0 (53.98)					M	ax-Attach [®] F	Rina				
(in) (in) (in) (ibs) CS lbs (kg) Model No. Adhesive Back 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.125 0.125 0.014 16.3 (7.39) CMP751212P2N42 - 0.750 0.186 0.125 0.011 #8 11.0 (4.99) CMP7512CSP2N42 - 0.875 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 1.000 0.186 0.125 0.800 #8 30.0 (13.60) CMP101912SP2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADF 1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP151212P2N42 - 1.500 0.125 0.125 0.59 67.3 (30.53) CMP151212P2N42 CMP151212P2ADF 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 - <	O.D.	I.D.	.D. Height	Weight			5	Model No. with			
0.750 0.186 0.125 0.011 #8 11.0 (4.99) CMP7512CSP2N42 - 0.875 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 1.000 0.186 0.125 0.800 #8 30.0 (13.60) CMP101012CSP2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADH 1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP151212P2N42 - 1.500 0.125 0.125 0.059 67.3 (30.53) CMP151212P2N42 CMP151212P2ADH 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 -	(in)	(in)			CS	lbs (kg)	Model No.	Adhesive Back			
0.875 0.186 0.125 0.020 #8 14.0 (6.35) CMP8712CSP2N42 - 1.000 0.186 0.125 0.800 #8 30.0 (13.60) CMP10012CSP2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADH 1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP151212CSP2N42 - 1.500 0.125 0.125 0.059 67.3 (30.53) CMP151212P2N42 CMP151212P2ADH 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 -	0.750	0.125	125 0.125	0.014		16.3 (7.39)	CMP751212P2N42	-			
1.000 0.186 0.125 0.800 #8 30.0 (13.60) CMP10012CSP2N42 - 1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADF 1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP151212CSP2N42 - 1.500 0.125 0.125 0.059 67.3 (30.53) CMP151212P2N42 CMP151212P2ADF 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 - Max-Attach® Rectangle	0.750	0.186	186 0.125	0.011	#8	11.0 (4.99)	CMP7512CSP2N42	-			
1.000 0.190 0.125 0.026 33.2 (15.06) CMP101912P2N42 CMP101912P2ADH 1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP12512CSP2N42 - 1.500 0.125 0.125 0.059 67.3 (30.53) CMP151212P2N42 CMP151212P2ADH 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 - Max-Attach® Rectangle	0.875	0.186	186 0.125	0.020	#8		CMP8712CSP2N42	-			
1.250 0.186 0.125 0.040 #8 42.0 (19.05) CMP12512CSP2N42 - 1.500 0.125 0.125 0.059 67.3 (30.53) CMP151212P2N42 CMP151212P2ADH 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 -	1.000	0.186	186 0.125	0.800	#8	30.0 (13.60)	CMP10012CSP2N42	-			
1.500 0.125 0.125 0.059 67.3 (30.53) CMP151212P2N42 CMP151212P2ADH 2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 - Max-Attach® Rectangle		0.190		0.026			CMP101912P2N42	CMP101912P2ADH			
2.000 0.875 0.187 0.128 119.0 (53.98) CMP208718P2N42 - Max-Attach® Rectangle					#8		CMP12512CSP2N42	-			
Max-Attach® Rectangle				0.059		67.3 (30.53)	CMP151212P2N42	CMP151212P2ADH			
	2.000	0.875	875 0.187	0.128		119.0 (53.98)	CMP208718P2N42	-			
					Max	-Attach® Rec	tangle				
	Length	Width	idth Height	Weight		Hold -	0	Model No. with			
(in) (in) (lbs) CS lbs (kg) Model No. Adhesive Back		. /	, , ,	· /	CS						
						(/		CMP010505P1ADH			
							CMP010510P1N42	CMP010510P1ADH			
	1.000			0.018			-	CMP061010P2ADH			
1.000 1.000 0.125 0.038 #8 26.0 (11.79) CMP011010CP2N42 -					#8	()		-			
								CMP011010P1ADH			
1.500 1.000 0.125 0.049 #8 45.0 (20.41) CMP011510CP2N42 -	1.500	1.000	000 0.125	0.049	#8	45.0 (20.41)	CMP011510CP2N42	-			
1.500 1.000 0.187 0.076 62.1 (28.17) CMP181510P2N35 -								-			
						()		CMP181510P2ADH			
1.500 1.500 0.125 0.076 86.4 (39.19) CMP011515P1N42 CMP011515P1ADH	1.500	1.500	500 0.125	0.076		86.4 (39.19)	CMP011515P1N42	CMP011515P1ADH			

MAG-MATE®

SMARTMAG® ALIGNMENT ENCODED MAGNET MATERIAL

SmartMag® alignment magnets are multi-pole encoded magnets that contain small magnetic poles encoded into a single face of raw magnet material to create alignment patterns that can produce complex precision alignment that has not been achieved with conventionally magnetized magnet material. Maximum temperature is 180°F (82°C). They cannot be machined. Some models available with 3M VHB (Very High Bond) adhesive backing for placement on non-ferrous surfaces.

Twist-Latch:


Twist-Latch SmartMags® will repel until they rotate through the zero-force transition point where they will attract and attach. They have an alignment pattern that will repel or release the magnets when one magnet is rotated into a specific release orientation.

Detent:

Detent SmartMags® will align at specific angles when rotated and hold its position until enough force is applied to rotate one magnet into the next position.

Centering:

Centering SmartMags® are a distinct type of Alignment SmartMag® that are produced in matching pairs and will align along a set axis.

			Twist-La	itch – Sr	nartMag® D	isc or Ring Pairs		
O.D. (in)	l.D. (in)	Height (in)	Release Angle	Weight (lbs)	Hold - Ibs (kg)	Model No.	Model No. with Adhesive Back	
1.000	-	0.125	120°	0.027	15.0 (6.80)	CMP2M1012L12	CMP1012L12ADH	
1.000	-	0.125	180°	0.027	19.0 (8.62)	CMP2M1012L18	CMP1012L18ADH	
1.000	0.190	0.125	120°	0.026	12.0 (5.44)	CMP2M10CS12L12	-	
1.000	0.190	0.125	180°	0.026	14.0 (6.35)	CMP2M10CS12L18	-	
Detent – SmartMag [®] Disc or Ring Pairs								
O.D. I.D. Height Detent We (in) (in) (in) Angle (I					Hold - Ibs (kg)	Model No.	Model No. with Adhesive Back	
1.000	- 0.125		90°	0.027	16.0 (7.26)	CMP2M1012D09	CMP1012D09ADH	
1.000	-	0.125	120°	0.027	20.0 (9.07)	CMP2M1012D12	CMP1012D12ADH	
1.000	0.190	0.125	90°	0.026	12.0 (5.44)	CMP2M1012CSD09	-	
1.000	0.190	0.125	120°	0.026	16.0 (7.26)	CMP2M1012CSD12		
			Centeri	ng – Sm	nartMag® D	isc or Ring Pairs		
O.D. I.D. Height Relea (in) (in) (in) Ang				Weight (lbs)	Hold - Ibs (kg)	Model No.	Model No. with Adhesive Back	

32.0 (14.52)

22.0 (9.98)

imi@magnetics.com TOLL FREE

1.000

1.000 0.190

0.125

0.125

180°

180°

0.027

0.026

magnetics.com

CMP2M1012C3ADH

CMP2M1012C3

CMP2M10CS12C3

CYLINDRICAL FIXTURE MAGNET ASSEMBLIES

JØV

CYLINDRICAL FIXTURE ASSEMBLIES

A1: Rare Earth Neodymium 1-Pole magnet in an Aluminum insulated cup. Powerful compact magnet that can be press fit or use tapped hole for mounting. +/-.003" diameter & .015" length. Maximum temperature 180°F (82°C).

A2: Max-Attach' Rare Earth Neodymium in an Aluminum insulated cup. Multi-pole compact magnet that can be press fit or use tapped hole for mounting. +/- .003" diameter & .015" length. Maximum temperature 180°F (82°C).

B: Rare Earth 3-Pole magnet in an Aluminum insulated cup. Extended poles can be lightly machined. Can be press fit or use tapped hole for mounting. +/-.003" diameter & .015" length. Maximum temperature 180°F (82°C).

C: Rare Earth Neodymium 4-Pole magnet in an Aluminum insulated cup. Extended poles can be lightly machined. Can be press fit or use thru-hole for mounting. +/- .008" diameter & +/- .015" length. Maximum temperature 180°F (82°C).

D: Rare Earth Neodymium 3-Pole magnet in an Aluminum insulated cup. Maximum strength in a compact package. Can be press fit or use thru-holes for mounting. +/-.008" dia. & +/-.015" length. Maximum temperature 180°F (82°C). Mounting hole center 1-13/16".
E: Rare Earth Neodymium Island 2-Pole magnet in a steel cup. Ideal for shallow fixtures. Can not be press fit without additional insulation. Use tapped hole for mounting. +/-.005" dia. & +/-.015" length. Maximum temperature 180°F (82°C).

F: Rare Earth Neodymium parallel 2-Pole magnet in an Aluminum insulated cup. Flush face magnet, can be press fit or use tapped hole for mounting. +/- .008" diameter & +/- .015" length. Maximum temperature 180°F (82°C).

G: Rare Earth Neodymium parallel 2-Pole magnet in a brass insulated cup. Ideal for metric press fit applications. +/- .002" diameter & length. Maximum temperature 180°F (82°C).

H: Rare Earth Samarium Cobalt parallel 2-Pole magnet in a brass insulated cup. Ideal for high heat metric press fit applications. +/- .002 diameter & length. Maximum temperature 392°F (200°C).

I: Alnico Island 2-Pole magnet in a steel cup. Especially effective in mold applications. Can not be press fit without additional insulation. Use tapped hole for mounting. +/-.005'' diameter & +/-.015'' length. Maximum temperature 800°F (427°C).

J: Alnico magnet material shielded in a non-conductive sleeve, 1-Pole on each end.

Insulator prevents loss of magnetic flux when inserted into steel components or fixtures. No mounting holes. +/-.001" diameter & +/- .005" length. Maximum temperature 800° F (427°C).

K: Rare Earth Neodymium magnet material shielded in a non-conductive sleeve, 1-Pole on each end. Insulator prevents loss of magnetic flux when inserted into steel components or fixtures. No mounting holes. +/- .001 diameter & +/- .005" length. Maximum temperature 180°F (82°C).

L: Alnico Multi-Pole magnet in an Aluminum insulated cup. Very effective on thin metal or difficult applications. Counter sunk mounting hole for easy installation. +/- .006" diameter & +/- .015" length. Maximum temperature 300°F (148°C).

M: Samarium Cobalt, Island 2-Pole magnet in a steel cup. Effective in mold applications. Cannot be press fit without additional insulation. Use tapped hole for mounting. +/- .005" 0.D. & +/- .015" length. Maximum temperature 392°F (200°C).

5		Hold - Ibs (kg)	Dia. (in)	Ln. (in)	Tap Size	Depth	Wt. (lbs)	Model No.
	A1	0.25 (0.11)	1/4	1/2	#6-32	1/4	0.01	N250T
	A1	1.30 (0.59)	3/8	1/2	#8-32	1/4	0.01	N375T
	A1	2.65 (1.20)	1/2	1/2	#10-24	1/4	0.01	N500T
	A1	4.35 (1.97)	5/8	1/2	#10-24	1/4	0.02	N625T
	A1	6.00 (2.72)	3/4	1/2	#10-24	1/4	0.03	N750T
	A1	7.50 (3.40)	1	1/2	#1/4-20	1/4	0.06	N1000T
	A2	7.80 (3.54)	3/4	1/2	#10-24	1/4	0.03	CMP750T
	A2 B	10.4 (4.72) 15.50 (7.03)	1 1	1/2 3/4	#1/4-20 #1/4-20	1/4 1/4	0.06 0.08	CMP1000T N3T1002
	B	26.00 (11.79)	1-1/4	3/4	#5/16-18	1/4	0.08	N3T1252
	C	45.00 (20.41)	2	1/2	#1/4 - Flat	-	0.14	C4H2000
	С	50.00 (22.68)	2	3/4	#1/4 - Flat	-	0.26	C4H2002
	С	60.00 (27.21)	2	1	#1/4 - Flat	-	0.33	C4H2004
	С	90.00 (40.82)	2-1/2	1	#1/4 - Flat	-	0.53	C4H2504
	D	145.00 (65.77)	3	1	#1/4 - Flat	-	1.23	C5H3004
	Е	3.00 (1.36)	3/8	1/2	#8-32	.100	0.02	R375
	Е	8.00 (3.63)	1/2	1/2	#10-32	.120	0.03	R500
	Е	22.00 (9.98)	3/4	1/2	#10-32	.150	0.06	R750
	E	46.00 (20.86)	1	1/2	#1/4-20	.150	0.10	R1000
	E	50.00 (22.68)	1-1/4	1/2	#5/16-18	.150	0.16	R1250
	F	18.00 (8.16) 43.00 (19.50)	3/4	1-3/16	#1/4-20	1/4	0.10	NT750
	F	43.00 (19.50) 102.00 (46.26)	1 1-1/2	1-5/16 2-1/16	#1/4-20 #5/16-18	5/16 5/16	0.20 0.60	NT1000 NT1500
	F	172.00 (46.26)	2	2-1/16	#3/8-16	5/16	1.30	NT2000
	Г G	4.40 (1.99)	∠ 10 mm	2-7710 20 mm	+3/0-10	-	0.03	PF10N
	G	6.60 (2.99)	13 mm	20 mm	-	-	0.04	PF13N
	G	13.80 (6.26)	16 mm	20 mm	-	-	0.06	PF16N
	G	25.40 (11.52)	20 mm	25 mm	-	-	0.14	PF20N
	Н	0.90 (0.41)	06 mm	20 mm	-	-	0.02	PF06S
	Н	4.40 (1.99)	10 mm	20 mm	-	-	0.03	PF10S
	Н	6.60 (2.99)	13 mm	20 mm	-	-	0.04	PF13S
	Н	13.80 (6.26)	16 mm	20 mm	-	-	0.06	PF16S
	Н	25.40 (11.52)	20 mm	25 mm	-	-	0.14	PF20S
	н	44.10 (20.00)	25 mm	35 mm		-	0.30	PF25S
	1	0.72 (0.32)	3/8	1/2	#8-32	3/32	0.02	A375
	I	1.13 (0.51) 1.54 (0.70)	1/2 1/2	1/2 3/4	#10-32 #10-32	5/32 3/16	0.03 0.04	A500 A502
	I I	1.54 (0.70)	5/8	3/4	#10-32 #10-32	5/32	0.04	A502 A625
	÷	4.56 (2.07)	3/4	3/4	#10-32	1/4	0.07	A025 A752
	İ	4.00 (1.81)	1	1/2	#1/4-20	5/32	0.11	A1000
	i	7.25 (3.29)	1	1	#1/4-20	9/32	0.21	A1004
					Wall Th.			
	J	0.025 (0.0113)	3/16	1/4	0.018	-	0.01	ABS1825
	J	0.040 (0.0181)	3/16	1/2	0.018	-	0.01	ABS1850
	J	0.055 (0.0249)	1/4	1/4	0.032	-	0.01	ABS2525
	J	0.140 (0.0635)	1/4	1/2	0.032	-	0.01	ABS2550
	J	0.060 (0.0272)	5/16	1/4	0.032	-	0.01	ABS3125
	J	0.175 (0.0793)	5/16	1/2	0.032	-	0.01	ABS3150
	J	0.100 (0.0453) 0.200 (0.0907)	3/8 3/8	3/8 3/4	0.032 0.032	-	0.01 0.01	ABS3737
	J	0.200 (0.0907)	3/8	3/4	0.032	-	0.01	ABS3775 ABS5050
	J	0.680 (0.3084)	3/4	3/4	0.032	-	0.03	ABS5050 ABS7575
	K	0.13 (0.059)	1/8	1/4	0.002	-	0.00	RBS1225
	K	0.37 (0.168)	3/16	1/4	0.032	-	0.01	RBS1825
	K	0.88 (0.399)	1/4	1/4	0.032	-	0.01	RBS2525
	Κ	0.95 (0.043)	1/4	1/2	0.032	-	0.01	RBS2550
	К	1.00 (0.45)	5/16	1/4	0.032	-	0.01	RBS3125
	Κ	2.63 (1.19)	3/8	3/8	0.032	-	0.01	RBS3737
	K	3.13 (1.42)	1/2	1/4	0.062	-	0.03	RBS5025
	K	4.63 (2.10)	1/2	1/2	0.062	-	0.03	RBS5050
	K	7.50 (3.40)	3/4	3/8	0.062	-	0.05	RBS7537
	1	8 00 (2 62)	1 1/0		Socket Head		0.10	AD1604
	L	8.00 (3.63)	1-1/8	25/32	#1/4-20	4	0.10	AR1501
	L	12.00 (5.44) 35.00 (15.88)	1-3/8 2-1/2	25/32 1-9/32	#1/4-20 #1/2-13	6 8	0.30 1.30	AR1502 AR1504
	L	55.00 (13.00)	2-1/2	1-3/32	Tap Size	0	1.50	7111004
	М	4.3	3/8	1/2	#8-32	0.10	0.02	A375SMC
	M	11	1/2	1/2	#10-32	0.12	0.02	A500SMC
	Μ	20.16	3/4	1/2	#10-32	0.19	0.06	A750SMC
	Μ	54	1	1/2	1/4-20	0.16	0.11	A1000SMC
	М	90	1-1/4	1/2	5/16-18	0.39	0.16	A1250SMC

RECTANGULAR FIXTURE MAGNET ASSEMBLIES

RECTANGULAR FIXTURE ASSEMBLIES

	Hold - Ibs (kg)	Thick. (in)	Width (in)	Length (in)	No. of Poles	Hole Diameter (in)	Weight (lbs)	Model No.
A1	22.5 (10.21)	1-1/4	1	4-1/2	2	-	0.64	AC2100
A1	. ,	1-1/4	1	4-1/2	2	-	0.65	AC2101
A1	32.5 (14.75)	1-1/4	1	4-1/2	2	-	0.66	AC2102
A2	80.0 (36.29)	1-1/4	1	4-1/2	2	-	0.66	AC2102R
В	39.0 (17.69)	1-1/4	1-1/4	4-1/2	2	-	0.84	AC2103
В	59.0 (26.76)	1-1/4	1-1/4	4-1/2	3	-	0.88	AC2201
В	65.0 (29.49)	1-1/4	1-7/8	4-1/2	3	-	1.19	AC2203
В	79.0 (35.83)	1-1/4	1-7/8	4-1/2	3	-	1.28	AC2204
В	95.0 (43.10)	1-1/4	1-1/4	4-1/2	2	-	0.84	AC2103R
В	115.5 (52.39)	1-1/4	2-1/2	4-1/2	4	-	1.75	AC2303
В	178.0 (80.74)	1-1/4	1-7/8	4-1/2	3	-	1.28	AC2204R
	(,				Ctrs (in	`		
С	12.5 (5.67)	3/8	1-3/8	3-1/4	2-5/8	0.28	0.10	LP2100
C	43.5 (19.73)	3/8	1-3/8	3-1/4	2-5/8	0.28	0.10	LP2100
C	13.5 (6.12)	7/16	1-3/8	3-1/4	2-5/8	0.28	0.30	LP2101
C	14.5 (6.58)	7/16	1-3/8	3-1/4	2-5/8	0.28	0.30	LP2102
C	15.5 (7.03)	9/16	1-3/8	3-1/4	2-5/8	0.28	0.30	LP2103
D	17.5 (7.94)	1	1-5/8	2	1-1/2	0.22	0.20	5C2565
E	10.0 (4.54)	5/8	1-15/64		2-7/8	0.25	0.10	SS2103
E	15.0 (6.81)	5/8	1-5/8	3-5/8	2-7/8	0.25	0.30	SS2100
F	31.0 (14.06)	9/16	2-3/8	2-3/4	1-1/4	0.28	0.50	WH2100
G	32.0 (14.52)	5/8	1/2	3	2-1/2	0.28	0.10	MX10354
Н	40.0 (18.14)	1-3/8	7/8	3-1/4	2-3/4	0.28	0.55	BP0040
Н	60.0 (27.21)	1-3/8	1-1/4	3-1/4	2-3/4	0.28	0.70	BP0060
Н	120.0 (54.43)	1-3/8	1-1/4	5-1/4	4-1/2	0.28	1.35	BP0120
Н			1-7/8	5-1/4	4-1/2	0.28	3.25	BP0250
1	14.0 (6.35)	3/16	9/16	1-3/4	1.47	0.19	0.10	MX0477
J	9.0 (4.09)	9/16	1	2-1/2	2	0.28	0.20	LC2360
J	21.0 (9.53)	9/16	1	4-1/2	4	0.28	0.40	LC2361
J	29.0 (13.16)	9/16	1	6-1/2	6	0.28	0.60	LC2362
J	88.0 (39.92)	9/16	1	18-1/2	18	0.28	1.80	LC2364
J	25.0 (11.34)	11/32	1-1/2	12	11	0.28	1.12	MQ1129
J	63.0 (28.58)	5/8	1-1/2	12	11	0.28	1.62	MQ1130
J	150.0 (68.04)	5/8	2-1/2	12	11	0.28	2.74	MQ1132

- A. A1: Ceramic magnet, 2-Pole assembly molded in a black plastic body. Effective for holding heavy parts and holding against shear forces. Supplied with mounting holes on either end of the magnet on either end of the magnet. Maximum temperature 300°F (148°C). USA M.A.D.E.™
 A2: Rare Earth magnet material, 2-Pole assembly molded in a grey plastic body. Effective for holding heavy parts and holding against shear forces. Supplied with mounting holes on either end of the magnet on either end of the magnet. Maximum temperature is 180°F (82°C). USA M.A.D.E.™
- B. Rare Earth magnet material, 2 or 3-Pole assembly potted in an aluminum housing. Effective for holding heavy parts and holding against shear forces. Supplied without mounting holes, they can be drilled, tapped, milled, etc. on either end of the magnet. Maximum temperature is 180°F (82°C). USA M.A.D.E.™
- C. Ceramic magnet (except LP2100R is Rare Earth) placed in a 400 Stainless Steel channel covered with 300 stainless steel. Use 1/4"-20 (m6) bolt or screws for mounting this non-corrosive 2-pole assembly. Maximum temperature 300°F (148°C). Rare Earth maximum temperature is 180°F (82°C). USA M.A.D.E.™
- D. Ceramic magnet sandwiched between steel pole pieces. Use 10-32 (m5) bolt or screws for mounting this non-corrosive 2-Pole assembly. Maximum temperature 300°F (148°C).
- E. Paint Rack magnet uses a 400 Stainless Steel channel covered with 300 stainless steel. Use 1/4"-20 (m6) bolt or screws for mounting this noncorrosive 2-Pole assembly. Maximum temperature 350°F (177°C). USA M.A.D.E.™
- F. Two ceramic magnets placed in a 400 Stainless Steel channel covered with 300 Stainless Steel. Center mount using two 1/4" -20 (m6) bolt or screws for mounting this non-corrosive, 2-pole assembly. Maximum temperature 300°F (148°C).
- G. Rare Earth magnet material is sandwiched between steel pole pieces and welded to a stainless steel back plate. This extremely powerful assembly is painted red and fits narrow openings. Use 1/4"-20 (m6) bolt or screws for mounting this 2-Pole assembly. Maximum temperature is 180°F (82°C). USA M.A.D.E.™
- H. Ceramic magnet material is sandwiched between steel pole pieces. All-welded construction with a stainless steel cover. No epoxy, painted black. Can be used for holding and transferring of parts, aligning pieces during welding operations and as the holding elements on paint racks. Use 1/4"-20 (m6) bolt or screws for mounting this 2-Pole assembly. Maximum temperature is 480°F (248°C). USA M.A.D.E.[™]
- Nickel Plated Rare Earth magnet material is glued to a bright plated steel channel. This extremely powerful assembly is ideal for low profile applications that require strong pull pounds. Use 10-32 (m5) bolt or screws for mounting this 2-Pole assembly. Maximum temperature is 180°F (82°C).
- J. Ceramic magnet material placed in a 400 Stainless Steel channel and covered. Exception: MQ1129 is epoxy covered. This full-length magnetic holding force gives generous room for various fastener heads. Use 10-32 (m5) bolt or screws for mounting this non-corrosive 2-Pole assembly. Maximum temperature 300°F (148°C). Prefix LC = USA M.A.D.E[™].

21

CUP MAGNET ASSEMBLIES PLATED CUP MAGNET ASSEMBLIES

Secure tarps, cables, wires, signs and more to any steel surface, including A overhead beams, ceiling decks, drop ceiling channels and metal joists. These cup magnet assemblies are quickly installed and repositioned. Note: **Ceramic** cup magnets are heat resistant < 300°F (148°C) ± .030° all dimensions. **Rare Earth** cup magnets are heat resistant up to < 180°F (82°C). Cup magnet (base) ±.015″ diameter, ±.010″ thickness, through holes ± .005″.

(82°C). Cup magnet (base) \pm .015" diameter, \pm .010" thickness, through hole **MX0984R** \pm .015" all dimensions.

					Through				an	
Style	Max - Ibs (kg)	Description	Magnet	O.D. (in)	Hole (in)	Rec. Mounting Screw	Magnet I.D. (in)	OAH (in)	Wt. (lbs)	Model No.
Α	23.0 (10.43)	Low Profile Cup	Rare Earth	0.79	0.177	8-32	0.32	0.275	0.04	MX0787R
Α	30.0 (13.69)	Low Profile Cup	Rare Earth	0.98	0.216	10-32	0.35	0.315	0.05	MX0984R
Α	15.0 (6.80)	Low Profile Cup	Ceramic	1.24	0.156	6-32	0.25	0.188	0.03	MX1000
Α	36.0 (16.33)	Low Profile Cup	Rare Earth	1.24	0.125	4-40	0.25	0.188	0.03	MX1000R
Α	25.0 (11.34)	Low Profile Cup	Ceramic	1.41	0.188	8-32	0.375	0.281	0.05	MX1500
Α	51.0 (23.13)	Low Profile Cup	Rare Earth	1.41	0.188	10-32	0.375	0.281	0.05	MX1500R
Α	42.0 (19.05)	Low Profile Cup	Ceramic	2.03	0.188	10-32	0.859	0.313	0.15	MX2000
Α	83.0 (37.65)	Low Profile Cup	Rare Earth	2.03	0.188	10-24	0.438	0.313	0.10	MX2002R
Α	110.0 (49.90)	Low Profile Cup	Rare Earth	2.03	0.188	10-24	0.438	0.313	0.12	MX2004R
Α	80.0 (36.29)	Low Profile Cup	Ceramic	2.63	0.281	1/4-20	1.00	0.375	0.30	MX2500
Α	200.0 (90.72)	Low Profile Cup	Rare Earth	2.63	0.281	1/4-20	0.625	0.375	0.40	MX2508R
Α	112.0 (50.80)	Low Profile Cup	Ceramic	2.88	0.270	1/4-20	1.00	0.375	0.35	MX2750
Α	110.0 (63.5)	Low Profile Cup	Ceramic	3.18	0.281	1/4-20	1.203	0.438	0.53	MX3000
Α	147 (66.68)	Low Profile Cup	Ceramic	3.87	0.38	5/16-32	1.28	0.510	0.95	MX3870
Α	170.0 (77.11)	Low Profile Cup	Ceramic	4.90	0.500	3/8-16	1.75	0.5	1.50	MX5000
Α	270.0 (122.47)	Low Profile Cup	Rare Earth	4.90	0.500	3/8-16	1.75	0.5	1.50	MX5000R
					Thread					
В	15.0 (6.80)	Cup w/ Bolt & Nuts	Ceramic	1.24	6-32	-	0.25	1.188	0.05	MX1000B
В	25.0 (11.34)	Cup w/ Bolt & Nuts	Ceramic	1.41	8-32	-	0.375	1.375	0.10	MX1500B
В	42.0 (19.05)	Cup w/ Bolt & Nuts	Ceramic	2.03	10-24	-	0.859	1.063	0.20	MX2000B
В	83.0 (37.65)	Cup w/ Bolt & Nuts	Rare Earth	2.03	10-24	_	0.438	1.566	0.20	MX2002RB
В	110.0 (49.90)	Cup w/ Bolt & Nuts	Rare Earth	2.03	10-24	-	0.438	1.566	0.22	MX2004RB
В	50.0 (22.68)	Cup w/ Bolt & Nuts	Ceramic	2.25	5/16-18	-	-	1.188	0.33	MX2250B
В	80.0 (36.29)	Cup w/ Bolt & Nuts	Ceramic	2.63	1/4-20	-	1.00	2.120	0.40	MX2500B
В	200.0 (90.72)	Cup w/ Bolt & Nuts	Rare Earth	2.63	1/4-20	-	0.625	2.120	0.50	MX2508RB
В	112.0 (50.80)	Cup w/ Bolt & Nuts	Ceramic	2.88	1/4-20	-	1.00	2.120	0.45	MX2750B
В	110.0 (63.5)	Cup w/ Bolt & Nuts	Ceramic	3.18	1/4-20	-	1.203	2.180	0.60	MX3000B
В	170.0 (77.11)	Cup w/ Bolt & Nuts	Ceramic	4.90	3/8-16	_	1.75	2.120	1.70	MX5000B
С	15.0 (6.80)	Cup w/ Adh. Back	Ceramic	1.24	Adhesive	-	0.25	0.188	0.03	MX1000ADH
С	25.0 (11.34)	Cup w/ Adh. Back	Ceramic	1.41	Adhesive	-	0.375	0.281	0.05	MX1500ADH
С	42.0 (19.05)	Cup w/ Adh.Back	Ceramic	2.03	Adhesive	-	0.859	0.313	0.10	MX2000ADH
					Opening (in)				
D	15.0 (6.80)	"D" Loop	Ceramic	1.24	0.43 x 0.75	-	0.25	0.375	0.05	MX1000DL
D	25.0 (11.34)	"D" Loop	Ceramic	1.41	0.43 x 0.75	-	0.375	0.50	0.10	MX1500DL
D	42.0 (19.05)	"D" Loop	Ceramic	2.03	0.43 x 0.75	-	0.859	0.5625	0.15	MX2000DL
					Thread (i	n)				
E	80.0 (36.29)	Threaded Hole	Ceramic	2.63	#10-32	-	1.00	0.375	0.30	MX2500TH
E	110.0 (63.5)	Threaded Hole	Ceramic	3.18	#10-32	-	1.203	0.438	0.53	MX3000TH
E	147 (66.68)	Threaded Hole	Ceramic	3.87	1/4-20	-	1.28	0.510	0.95	MX3870TH
					Carabiner Ln. (in)	Carabiner Opening (in)				
F	35 (15.9)	Carabiner Hook	Rare Earth	1.12	1.12	1/4	1-3/4	0.10	0.10	MX1125RCB
					Stud Top O.D.	Stud Ht.				
G	36 (15.9)	Key Slot Small	Rare Earth	1.24	0.28	0.2	-	0.388	0.04	MX1000RKHS
G	51 (23.13)	Key Slot Large	Rare Earth	1.41	0.35	0.2	-	0.481	0.06	MX1500RKHS

RUBBER PROTECTION BOOTS FOR CUP BASE MAGNETS

Ideal for protecting painted, plated, polished, etc. surfaces from scratches. Boots also increase resistance to shear forces. Rubber boots fit over the magnetic face of cup magnets. Note: Using a rubber boot on a cup magnet will reduce the magnet's holding power due to air gap. See holding power below.

olor	Air Gap (in)	Wt. (Ibs)	Fits: MAX lbs (kg)	Model No.
Blue	0.032	0.001	MX1000: 2.3 (1.04); MX1000R: 11 (4.99)	MX10BB
Black	0.045	0.001	MX1500: 3.4 (1.54); MX1500R: 13.3 (6.03)	MX15BB
Blue	0.022	0.001	MX2000: 9.5 (14.31); MX2002R: 31.4 (14.24); MX2004R: 47.2 (21.41)	MX20BB
Black	0.042	0.020	MX2500: 18.3 (8.30); MX2508R: 70.0 (31.75)	MX25BB
Black	0.035	0.030	MX3000: 37.9 (17.91)	MX30BB
Blue	0.045	0.050	MX5000: 70.0 (31.75); MX5000R: 117.5 (53.30)	MX50BB

MAGNETIC WIRE CABLE HOLDERS

Secure cables and wires with these powerful magnets. Fast installation without drilling holes. Remove or reposition magnets when needed. Part number MX0560RZIP6 contains 6 one-piece galvanized steel zip tie.

								\sim	
Style	Max - Ibs (kg)	Description	Magnet	O.D. (in)	Through Hole (in)	Magnet I.D. (in)	OAH (in)	Wt. (lbs)	Model No.
A	15.0 (6.80)	Black Plastic Zip Tie Holder	Ceramic	1.24	0.16 x 0.38	0.25	0.44	0.05	MX1000ZIP1
A	38.0 (22.29)	Black Plastic Zip Tie Holder	Rare Earth	1.24	0.16 x 0.38	0.25	0.44	0.05	MX1000RZIP1
В	15.0 (6.80)	Black Plastic Holder & Reusable Zip Tie	Ceramic	1.24	0.16 x 0.38	0.25	0.44	0.05	MX1000ZIP2
В	38.0 (22.29)	Black Plastic Holder & Reusable Zip Tie	Rare Earth	1.24	0.16 x 0.38	0.25	0.44	0.05	MX1000RZIP2
С	15.0 (6.80)	Black Plastic Cable Holder	Ceramic	1.24	0.44 - 1.00	0.25	0.75	0.05	MX1000CBL1
D	6.0 (2.72)	Galvanized Steel	Rare Earth	0.56	0.21 x 0.10	0.56	0.06	0.05	MX0560RZIP6

В

MAGNETS FOR HOLDING & STORAGE PORTABLE MAGNETIC HOLDERS

Secure brooms, flashlights, spray cans, markers, etc. to any steel surface without drilling to install clips/holders. These powerful permanent magnets are guickly installed and repositioned when needed.

	critical tools for	the job handy.						/		
Style	Max Hold - Ibs (kg)	Description	Application	Magnet	" O.D. (in)	Opening (in)	Magnet I.D. (in)	OAH (in)	Wt. (Ibs)	Model No.
А	15.0 (6.80)	Nickel Plated Clamp	Spring Tension	Ceramic	1.24	0.19 – 0.38	0.25	0.88	0.05	MX1000NP01
A	25.0 (11.34)	Nickel Plated Clamp	Spring Tension	Ceramic	1.41	0.31 – 0.75	0.375	1.53	0.10	MX1500NP01
A	42.0 (19.05)	Nickel Plated Clamp	Spring Tension	Ceramic	2.03	0.63 – 1.25	0.859	2.31	0.19	MX2000NP01
A	80.0 (36.29)	Nickel Plated Clamp	Spring Tension	Ceramic	2.63	1.00 – 1.88	1.00	2.50	0.41	MX2500NP01
Α	15.0 (6.80)	Stainless Steel Clamp	Spring Tension	Ceramic	1.24	0.38 - 0.50	0.25	1.09	0.05	MX1000SS01
A	25.0 (11.34)	Stainless Steel Clamp	Spring Tension	Ceramic	1.41	0.63 – 0.88	0.375	1.91	0.11	MX1500SS01
A	25.0 (11.34)	Stainless Steel Clamp	Spring Tension	Ceramic	1.41	0.88 – 1.13	0.375	2.03	0.10	MX1500SS02
A	25.0 (11.34)	White Plastic Coated Clamp	Spring Tension	Ceramic	1.41	0.31 – 0.75	0.375	1.66	0.10	MX1500WP03
A	42.0 (19.05)	White Plastic Coated Clamp	Spring Tension	Ceramic	2.03	0.63 - 1.25	0.859	2.31	0.19	MX2000WP01
A	80.0 (36.29)	White Plastic Coated Clamp	Spring Tension	Ceramic	2.63	1.00 – 1.88	1.00	2.88	0.41	MX2500WP01
В	42.0 (19.05)	Black Vinyl Coated Clamp	Flashlight	Ceramic	2.03	1.50 – 1.88	0.859	2.19	0.19	MX2000VB02
С	15.0 (6.80)	Zinc Plated Clamp	Spring Tension	Ceramic	1.24	0.38 – 0.63	0.25	1.13	0.06	MX1000ZP01
С	25.0 (11.34)	Zinc Plated Clamp	Spring Tension	Ceramic	1.41	0.75 – 1.13	0.375	1.53	0.13	MX1500ZP01
С	25.0 (11.34)	Zinc Plated Clamp	Spring Tension	Ceramic	1.41	1.00 – 1.50	0.375	1.53	0.19	MX1500ZP02
С	15.0 (6.80)	Black Vinyl Coated Clamp	Spring Tension	Ceramic	1.24	0.38 - 0.63	0.25	1.13	0.06	MX1000VB01
С	25.0 (11.34)	Black Vinyl Coated Clamp	Spring Tension	Ceramic	1.41	0.75 – 1.13	0.375	1.53	0.13	MX1500VB01
С	19.0 (8.62)	Black Vinyl Coated Clamp	Spring Tension	Ceramic	2.03	2.00 - 2.50	0.859	2.31	0.22	MX2000VB01
D	15.0 (6.80)	Black Plastic Clamp	Non-Conductive	Ceramic	1.24	0.87 – 1.13	0.25	0.98	0.05	MX1000BP01
D	25.0 (11.34)	Black Plastic Clamp	Non-Conductive	Ceramic	1.41	1.13 – 1.38	0.375	1.25	0.10	MX1500BP01
D	42.0 (19.05)	Black Plastic Clamp	Non-Conductive	Ceramic	2.03	1.87 – 2.13	0.859	2.06	0.20	MX2000BP01
E	42.0 (19.05)	Red Vinyl Hook	Broom Holder	Ceramic	2.03	1.38	0.859	4.50	0.20	MX2000RV01
F	80.0 (36.29)	Black Rubber Spring Clamp	Broom Holder	Ceramic	2.63	0.87 – 1.25	1.00	1.50	0.65	MX2500BH01
F	Ň/A	Black Rubber Spring Clamp	Broom Holder	N/A	N/A	0.87 – 1.25	2.62"L x 1.25"W	/ x 1.50"H	0.20	981113
										0

TWO LINE CLAMPS

Instantly install magnetic clamps on any steel surface. No drilling or other mounting hardware needed. Idea for pneumatic lines, PVC lines and electrical wires. Perfect for holding forklift battery cables and connector in place. Bright plated permanent magnet and black polypropylene holder withstand moisture. Temperature range is -20° to 190°E

lemper	alule lalige is -2	0 10 190	Б								
ID (in)	Hold - Lbs (kg)	Dia (in)	Projects (in)	Weight (lb)	Model No.	ID (in)	Hold - Lbs (ka)	Dia (in)	Projects (in)	Weight (lb)	Model No.
1/4	25 (11.34)	1.41	1-1/4	0.10	TLC0250M	3/8	63 (28.57)	2.03	1-1/4	0.15	TLCS0375R
3/8	42 (19.05)	2.03	1-1/4	0.15	TLC0375M						
1/2	80 (36.29)	2.63	1-3/4	0.40	TLC0500M	1/2	63 (28.57)	2.63	1-3/4	0.40	TLCS0500R
5/8	80 (36.29)	2.63	1-3/4	0.40	TLC0625M	5/8	63 (28.57)	2.63	1-3/4	0.40	TLCS0625R

TOOL STORAGE HOLDING TRAYS

These Tool Storage Holding Trays are used for holding tools, fasteners, spray cans, tape, etc. to the sides of tool boxes, walls, tables or any area where tools need to be within reach. The Magnetic Mount tray allows you to quickly remove the tray from your toolbox and take it wherever your tools are needed. No need to run back and forth to your toolbox. Most standard size tool boxes will hold two, ST0625 trays, side by side. ST0625M

ST0625

ST1150

ST1400

ST1400M

FEATURES:

0.201 (5.11)

0.201 (5.11)

- » Sturdy one-piece Stainless Steel construction
- » Direct Mount or Magnetic Mount option
- » Tray depth one inch (1") on all models

4.25

4.25

» Direct mount models have 2 or 3 thru-holes

	Magnetic Mount										
Hold - Ibs (kg)	Height (in)	Length (in)	Projects (in)	Weight (lbs)	Model No.						
20.5 (9.29)	4.25	6.25	2.75	1.25	ST0625M						
43.5 (19.73)	4.25	11.50	2.75	2.30	ST1150M						
43.5 (19.73)	4.25	14.00	2.75	2.45	ST1400M						
Through Hole Mount											
Mounting Hole Height Length Projects Weight - in (mm) (in) (in) (in) (lbs) Model No.											
0.201 (5.11)	4 25	2 75	0.95	ST0625							

2.75

2.75

11.50

14.00

A B B C C C C C C C C C C C C C C C C C	C D		F
		7)	F

ramic	2.03	1.30	0.659	4.50	0.20 10	AZUUURV
ramic	2.63	0.87 – 1.25	1.00	1.50	0.65 M	X2500BH
A/A	N/A	0.87 – 1.25	2.62"L x 1.2	25"W x 1.50"H	0.20	981113
2		T	8			
о.	ID (in)	Hold - Lbs (kg)	Dia (in)	Projects (in)	Weight (lb) Model
Μ	3/8	63 (28 57)	2.03	1-1/4	0.15	TLCS03

TOLL FREE imi@magnetics.com

1.70

1.85

magnetics.com

ST1150M

MAG-MATE® MAGNETS FOR HOLDING & STORAGE CAN/CUP HOLDERS

Hold your can, cup, bottle, lubricant spray, etc. where you want it. Take it with you from one machine to another or anywhere there is a metal surface. Holds well on ferrous metal surfaces, painted or plated surfaces.

FEATURES:

- » Sturdy Stainless Steel holder
- » Holds diameters up to 3-3/8" with or without a handl
- » Available with magnets or through holes

Magnet Mount Hold - Ibs Weight Height (in) Width (in) Projects (in) Model No. (lbs) (kg) CCH01 3.5 4.25 4-1/4 41.0 (18.60) 0.85 82.0 (37.2) 3.5 8.25 4-1/4 2.10 CCH02 82.0 (37.2) 3.5 12 4-1/4 2.95 CCH03 Through Hole Mount Mounting Weight Height (in) Width (in) Projects (in) Hole (in) (lbs) Model No. 0.27 3.5 4.25 0.55 CCH11 4 8.25 3 5 CCH12 0.27 4 1.40 3.5 12 2.25 CCH13 0.27

MAGNETIC REVERSIBLE HOOKS

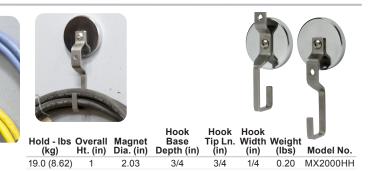
FEATURES:

- » Secures cables, wire, lights, garments and more to any flat steel surface.
- » Magnet can be quickly installed and repositioned.
- » Stainless steel hook can be used in the "open" position for quick access to store product.
- » Move the hook to "closed" position to prevent products from being knocked off.
- » Overall length 4.5"

IMPACT WRENCH/HEAT GUN HOLDER

Ideal for holding heavy impact wrenches, heat guns or any similar shaped tools that need to be kept handy. Powerful permanent magnet holds extremely well on steel surfaces. The thicker the steel the better the hold. **FEATURES:**

- » Powerful Permanent Magnet
- » Sturdy Stainless-Steel Holder
- » Holds diameters up to 3-3/8"
- » Heat resistant up to 300°F (148°C)
- » Lower loop is 2.35" diameter



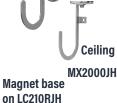
WKO1

IWHOTA:

Magnet Mount										
Hold - Height Width Projects Weight Mod Ibs (kg) (in) (in) (in) (Ibs) No.										
110 (63.50)	3.18	4.25	4.5	0.85	IWH01M					
	Through Hole Mount									
Mounting Hole (in)	Height (in)	Width (in)	Projects (in)	Weight (lbs)	Model No.					
0.27	3	4.25	4.10	0.40	IWH01					

UNIVERSAL J-HOOKS

Use J-Hooks to hold cables, wires, tubing, etc. to steel walls, ceilings or beams. Powerful magnet can be mounted on the hook in either of two positions for wall or ceiling installation. **FEATURES:**


- » Magnet can be quickly installed and repositioned.
- » Sturdy Stainless-Steel hook.

Use LC210RJH mostly for curved surfaces and also flat surfaces

LC210RJH

Hold - Ibs (kg)	Dia. (in)	Overall Length (in)	Overall Projects (in)	Open Range (in)	Weight (lbs)	Model No.
15 (6.80)	1.24	3.12	2.00	1.0 x 1.0	0.10	MX1000JH
25 (11.34)	1.41	3.87	2.75	1.5 x 1.5	0.15	MX1500JH
42 (19.05)	2.03	5.00	3.25	2.0 x 2.0	0.25	MX2000JH
36 (16.32)	-	5.50	3.50	2.0 x 2.0	0.30	LC210RJH

Wall

MX1000JH

Magnet base on LC210RJH swivels.

MAG-MATE[®]

MAGNETS FOR HOLDING & STORAGE

HOSE CORD HOOK/HOLDER

FEATURES:

- » Secure hoses, cables, cords and more to any flat, steel surface
- » Magnet can be quickly installed and repositioned
- » Sturdy stainless steel hook

Projects

(in)

4-3/8

» Small holder secures ends of hose/cord from unravelling

Magnet

Diameter (in)

2.88

Hook Base

Depth (in)

3-3/4

Hook Tip

Length (in)

2

Weight (lbs) Model No. MX2750HC1 0.65

Store all of your accessories in one spot with this new Multi-Rack tool holder! Designed to perfectly fit a number products from IMI and more, this versatile rack can alleviate storage issues, clutter, and works well with minimal wall space.

Hook Width

(in)

FEATURES:

Hold -

lbs (kg)

45 (20.41)

- » Mounts to stud walls, metal structures/equipment with up to #14 Wood Screws, #10 or #12 Self Tapping Screws or 1/4-20 bolts
- » Can cup holders
- » Impact wrench heat gun holder
- » Hole cord hook holder
- » Small accessory hook holder
- » 12" and 24" air tool holder rack
- » Clamp locking pliers rack
- » Magnetic tool holder
- » Grinder tool holder rack
- » Spray gun holder
- Manutina

Holds - Ibs (kg) Hole Size		Depth (in)	Width (in)	Height (in)	Weight (lbs) Model No.
1/4" Clearan	ce 1" Vertical 2" Horizontal	16-3/8"	1-1/2"	8-3/8"	2.1	HHEXT08

SPRAY GUN HOLDER

Keep your spray gun handy inside your paint booth! This magnetic Spray Gun Holder sticks through many layers of paint to hold your spray gun. Easily moved when necessary. FEATURES:

- » Sturdy Stainless Steel holder
- » Plated Permanent Ceramic Cup Magnet

Holds - Ibs (kg) Height (in) Width (in) Projects (in) Weight (Ibs) Model No. 95 (43.09) 4.9 4.9 5.5 1.75 SGH01

TOLL FREE imi@magnetics.com

MAG-MATI SGH01

TOOLS FOR HOLDING & STORAGE

SPRAY CAN RACK HOLDER

These stainless-steel racks are used for organizing and storing spray-paints, lubricants or other small, cylindrical cans right where you need them. Available in horizontal or vertical orientation, each rack holds up to 6 cans and can be ordered with either a magnetic mount or through-hole mounting style. Magnetic versions can be mounted to paint booths, metal storage cabinets, doors, machinery, or shelving and can be easily repositioned when needed. Use the through-hole version to mount to any non-ferrous surface. Vertical-style racks utilize a small magnet in each slot to securely hold the can in place in case of vibration or transport.

Horizontal Racks									
Hold – Lbs. (kg) Mounting Hole (in) Height (in) Width (in) Projects (in) Opening Dia. (in) Weight (lb) M									
NA	0.27 (1/4 bolt)	4	20	3.75	3	3.06	PCRH06		
18 (8.17)	NA	4	20	4	3	3.75	PCRH06M		
			Vertical I	Racks					
Hold – Lbs. (kg)	Mounting Hole (in)	Height (in)	Width (in)	Projects (in)	Opening Slot (in)	Weight (Ib)	Model No.		
NA	0.27 (1/4 bolt)	26	4.75	4	2.75	3.55	PCRVH06		
26 (11.79)	NA	26	4.75	4.375	2.75	4.25	PCRV06M		

ACCESSORY HOOK HOLDER

Accessory hooks/holders are used for many storage needs such as: shovels, brooms, rakes, tools, hammers, etc. Industrial strength, one-piece stainless steel construction, these hooks are available with and without magnets for mounting. Use magnetic versions for mounting to steel surfaces like metal storage cabinets, doors, machinery, beams, etc. Reposition when needed. Use the through holes to mount to any non-ferrous surface.

Magnet Mount										
Hold – Lbs. (kg) Ht. (in) Wd. (in) Projects (in) Hook Tip Ln. (in) Tip Gap (in) Wt. (lb) Mode										
18 (8.17)	5	4	3-1/4	2-3/4	2	1.05	AH02M			
50 (22.68)	68) 8 6			3-3/4	3-1/2	3-1/2 2.50				
			Through H	lole Mount						
Mounting Hole (in)	Ht. (in)	Wd. (in)	Projects (in)	Hook Tip Ln. (in)	Tip Gap (in)	Wt. (lb)	Model No.			
0.201 (#10 Bolt)	5	4	3	2-3/4	2	0.70	AH02			
0.266 (1/4-20)	8	6	4	3-3/4	3-1/2	1.45	AH03			

ON/OFF MAGNETIC TIE-DOWNS

Switchable Magnetic Tie-Downs for holding of tarps, signs, banners, etc. No need to drill, bolt or weld mounting tabs to surfaces. Place magnet on clean steel, push the handle slightly down and rotate 180° to turn magnet "On." Reverse steps to turn magnet "Off."

FEATURES:

- » On/Off Permanent Rare Earth Magnet
- » Locking On/Off Handle
- » 4:1 design factor
- » Performs best when mounted on a clean, smooth, flat, metal surface that is at least 1/4" thick
- » Works on flat and round ferrous surfaces

Hold - Ibs (kg)	Round Ibs (kg)			Length (in)	Loop Dia. (in)	Weight (lbs)	Model No.
35.0 (15.88)	19 (8.62)	2-3/4	1-13/16	4-1/8	1-1/8	0.90	MTD035R
110 (49.90)	57 (25.85)	4-3/4	2-3/4	5-3/4	1-1/8	4.50	MTD110R

TOOLS FOR HOLDING & STORAGE

AIR TOOL HOLDERS/RACK

Keep all your air tools organized, neat and handy with this one-piece sturdy rack. Available in three different lengths with slots for 1/4" or 3/8" air tool male couplers.

FEATURES:

- » Sturdy all Stainless Steel construction
- » Versatile mounting flange » Beveled flange to keep tools from vibrating off
- » Wide shelf for storage of other tools such as sockets

Coupler Size	Slot Width	Ht. (in)	Wd. (in)	Projects (in)	No. of Slots\ Holes	Wt. (Ibs)	Model No.
1/4	.34	1-1/2	12	4	5-4	1.75	ATH12-025
3/8	.50	1-1/2	12	4	5-4	1.75	ATH12-038
1/4	.34	1-1/2	24	4	11-10	3.50	ATH24-025
3/8	.50	1-1/2	24	4	11-10	3.50	ATH24-038

			The second second		
Hold - Ibs (kg)	Projects (in)	Length (in)	Height (in)	Weight (lbs)	Model No.
120.0 (54.44)	2	12	2	2.00	TH1200
180.0 (81.65)	2	18	2	3.00	TH1800
240.0 (108.87)	2	24	2	4.00	TH2400

MAGNETIC TOOL HOLDERS

» Mount to walls, work benches, ladders, etc. » Versatile mounting flange with screws provided

» Industrial strength keeps tools close at hand and organized

FEATURES:

» Durable stainless steel

construction » Holds a 10 Lb. Hammer!

» USA M.A.D.E.™

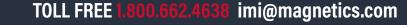
CLAMP/LOCKING PLIERS RACK

Organize a variety of Clamps and Locking Pliers with this one-piece sturdy rack. This unit organizes your clamping tools with larger slots for larger clamps and small key holed slots for smaller clamps and or locking pliers with the knurled tension adjusters. Works with many sizes and styles of C-Clamps, Flat-Bar Clamps, Welding Clamps and Locking Pliers.

FEATURES:

- » Sturdy all Stainless Steel construction
- » Nine, 0.51" wide slots for larger clamps
- » Four, 0.28" wide slots with 0.55" key hole for smaller clamps
- » Versatile mounting flange with slots and through holes for a variety of mounting options
- » Beveled flange to keep tools from vibrating off if cart or vehicle mounted

Height	Depth	Length	Weight	Model No.
(in)	(in)	(in)	(lbs)	
3"	5.3"	18"	3.3	VGR09


BATTERY TOOL STORAGE RACK

Keep your cordless battery tools securely stored and organized with this durable steel rack system. Works with most popular tool brands to store up to 5 tools & includes a shelf for chargers and accessories. Mounting holes and slots for typical 16" center studs and other mounting options. Unique locking bar feature works with your pad locks to prevent theft of valuable tools when used on job sites, in equipment trailers or service vehicles. The bar can also be secured with fasteners or pins to keep tools secure during transport.

FEATURES:

- » Durable formed steel construction with powder-coat finish
- » 5 slots for battery tool storage of impact drivers, drills, grinders and more
- » Shelf for chargers or accessories with cord routing holes
- » Locking bar to keep tools secure from theft or during transport (lock or hardware not included)
- » Slotted mounting holes for easy mounting (hardware not included)
- » Sixteen, ¼" Hex holes between tool slots for storage of hex shaft tools & bits
- » Three, through holes near the front of the shelf for securing magnets or other items to the underside of the shelf with #10 fasteners

Height	Depth	Length	Weight	Model No.
(in)	(in)	(in)	(Ibs)	
6.5"	7.25"	18"	8.75	DR05

TOOLS FOR HOLDING & STORAGE

KEY-SLOT MAGNET

Mount power strips, frames, anything with the key slot with this strong Rare Earth magnet available in two sizes and capacities.

FEATURES:

- » Strong T-Slot studs welded to a steel nickel plated cup for durability
- » Powerful Rare Earth cup magnet to keep your items hanging and secure from most steel surfaces
- » Two sizes available to work with most common sized t-slots found on powerstrips, home electronics, power tool chargers, tool kits, picture frames and more

Max - Ibs (kg)	Magnet	O.D. (in)	Through Hole (in)	Rec. Mounting Screw		Wt. (Ibs)	Model No.
36 (15.9)	Rare Earth	1.24	0.28	0.2	0.388	0.04	MX1000RKHS
51 (23.13)	Rare Earth	1.41	0.35	0.2	0.481	0.06	MX1500RKHS

ON/OFF MAGNETIC HANGING HOOKS

On/Off Switchable Permanent Rare Earth Magnetic hanging hooks are perfect for temporary holding of lines, hoses, lights, tools and more. Quickly secure and hold just about anything, anywhere with unique fast hook technology. **FEATURES:**

- » Sides can hold nuts, bolts, screws etc. when magnet is turned "ON"
- » Attaches to flat or round surfaces either one of two sides
- » Unique hook design prevents lines and hoses from popping off
- » Locking On/Off Handle

Hold - Ibs (kg)	Projects (in)	Width (in)	Length (in)	Weight (lbs)	Inside Length (in)	Loop Width (in)	Model No.
35 (15.88)	2-3/4	1-3/4	5-3/4	0.95	1-5/8	1-1/8	HH035R
110 (49.90)	4-5/8	2-1/2	7-5/8	4.65	1-7/8	1-3/8	HH110R

FOOT/ARM PULLS AS HOOKS

Heavy Duty Storage Hooks!

FEATURES:

- » Formed 12 gauge stainless steel construction
- » Two mounting holes to accept up to ¼" fasteners
- » Tumbled finish
- » Easy to mount to Stud Walls, Beams, Machinery, Trailers and more for storage of heavy items

APPLICATIONS:

- » Hang tool cases for heavier tools like saws, hydraulic ram kits, hammer drills & more
- » Organize heavy cables, hoses, and tubing
- » Horizontal storage of conduit, PVC, pipes, trim and other construction materials

						Model No.
Hold – Lbs. (kg)	Mounting Hole (in)	Height (in)	Width (in)	Projects (in)	Weight (lb)	Through Hole Mount
-	0.27" (1/4-20)	5	2-1/2	5-3/8	1.69	AP01
80 (36.29)	-	5	2-1/2	5-11/16	2.02	AP01M
-	0.2" (1/4-20)	5	2-1/2	4	0.9	FP01
80 (36.29)	-	5	2-1/2	4-3/8	1.5	FP01M

TOOLS FOR HOLDING & STORAGE SMART-LADDER REST [™]

A simple, cost-effective solution for ladder safety compliance. The Smart Ladder Rest™ is your best choice for getting workers on and off the roof safely with confidence. Developed and proven by a commercial roofing contractor for their own workers' safety, the Smart Ladder Rest delivers the safety you need to protect you most valuable assets.

FEATURES:

- » A simple, maintenance-free way to reduce injuries and liability and meet ladder safety compliance requirements
- » OSHA compliant pursuant to regulations 1910.23 and 1926.1053(B)(1).
- » Easy, low-cost installation on flat or pitched roofs.
- » Field Tested and proven to provide excellent ladder security.
- » Durable, corrosion resistant, ¼" stainless steel formed construction
- » Can't be used for unauthorized access to the roof, unlike permanent ladder systems
- » Show employees you're committed to their safety by providing a stable, secure ladder fall-prevention system

BENEFITS:

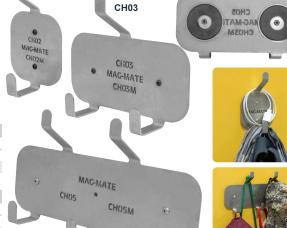
- » Prevents portable ladders from moving from side to side.
- » Prevents portable ladders from sliding away from the building.
- » Protects gutters and edge metal from ladders
- » Can be flashed in to provide a water tight roof.

COAT HOOK HOLDERS

Referred to as "coat" hooks, these holders are used for many storage needs such as: coats/jackets, lanyards, key chains, umbrellas, etc. Sturdy stainless steel construction, these coat hooks are available with and without magnets for mounting. Use magnetic versions for mounting to steel surfaces like cabinets, doors, machinery, beams, etc. Use the through holes to mount to any non-ferrous surface.

FEATURES:

- » Sturdy one-piece Stainless Steel construction
- » Offset hooks on 3 & 5 hook models for easy use
- » Powerful permanent magnets on models ending with "M"


		Magnetic	Mount		
Hold - Ibs (kg)	Height (in)	Width (in)	Projects (in)	Weight (lbs)	Model No.
20.5 (9.30)	7.23	4.25	2.54	0.95	CH02M
43.5 (19.73)	7.23	9.00	2.59	2.05	CH03M
53.2 (24.13)	7.23	13.75	2.64	3.25	CH05M
	Т	hrough Ho	ole Mount		
Mounting Hole (in)		Width(in)	Projects (in)	Weight (lbs)	Model No.
0.20	7.23	4.25	2.23	0.65	CH02
0.27	7.23	9.00	2.23	1.35	CH03

2.23

2.10

CH05

13.75

CH05

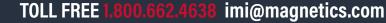
CH02

BAND STRAP HOLDER

0.27

Powerful magnets hold metal banding during the cutting process, preventing the cut ends from flying off and possibly injuring someone.

» (2) Powerful, permanent, Rare-Earth magnets


7.23

- » Large loop allows for metal cutters to access the banding between the magnets
- » Galvanized/Plated components can be use inside or outside

Magnet

Ln. (in) Wd. (in) Ht. (in) Wt. (lbs) Hold - Ibs (kg) Dia. (in) Model No. 36 (16.33) 0.98 5 - 3/80.98 2-5/8 0.20 BSH200R

29

MAGNETIC RETRIEVERS & INSPECTION MIRRORS

LONG REACH RETRIEVERS

JUS

Ideal for reaching behind, underneath or around machinery and/or difficult to reach areas. These tools have a maximum temperature of 300°F (148°C). The MX3000WAH lightweight long reach retriever has a round magnet at a 45 degree angle. The MM06X38 is a long retriever for narrow areas with a rectangular magnet.

MX3000WAH MM06X38 Magnet (in) Length (in) Weight (lbs) Model No. Lift - Ibs (kg) 3-1/4 Diameter 47.5 (21.55) MX3000WAH 38 1.70 8.0 (3.63) 1-3/8 x 6 **4**0 3 00 MM06X38

PARTS RETRIEVERS

Remove Steel Parts from bins, boxes, kegs, tables or floors.

FEATURES:

- » Easy release of collected parts or scrap
- » Powerful lightweight magnet
- » Durable aluminum housing
- » PR7800 stainless steel housing
- » Comfortable non-slip handle

Handle	Lift - Ibs (kg)	Ht. (in)	Wd. (in)	Ln. (in)	Weight (lbs)	Model No.
Short	5.0 (2.27)	7-1/2	2-3/8	4-1/2	1.6	PR7100
Short	7.0 (3.18)	7-1/2	2-3/8	4-1/2	1.7	PR7200
Short	11.0 (4.99)	7-1/2	2-3/8	4-1/2	1.8	PR7400
Long	5.0 (2.27)	33-1/2	2-3/8	4-1/2	2.4	PR7100-30
Long	7.0 (3.18)	33-1/2	2-3/8	4-1/2	2.5	PR7200-30
Long	11.0 (4.99)	33-1/2	2-3/8	4-1/2	2.7	PR7400-30

R

INSPECTION MIRRORS - HI-VIS ORANGE

These telescoping mirrors have a slim profile, joints that can swivel and/or rotate and have highly visual orange grips and/or heads. Never leave a tool behind! 301G240HVO had a retrieving magnet at the opposite end that can lift 2 lbs and has a handy pocket clip. IMS123HVO contains a stainless steel mirror for use in critical areas where foreign objects cannot be left behind. FOD (Foreign Object Debris) free. Handles are nonslip, solvent resistant cushion grips.

Style	Mirror (in)	Mirror	Shaft Material	Length (in)	Ext. Length (in)	Weight (lbs)	Model No.
Α	2 x 1	Glass	Stainless Steel	6-1/2	36	0.17	315HVO
В	2 x 2	Glass	Chrome Plated Brass	6-1/4	28	0.10	301G240HVO
С	3-1/2 x 2-1/2	Glass	Stainless Steel	7-1/4	37	0.21	318HVO
D1	2-1/4 Dia	Glass	Stainless Steel	7	36-1/2	0.20	309S1HVO
D2	2-1/4 Dia	Stainless	Stainless Steel	7	36	0.15	IMS123HVO
E	2 x 2	Acrylic	Stainless Steel	7	35-1/2	0.21	312AHVO

LIGHTED INSPECTION MIRROR

This telescoping glass mirror contains 3 LED lights that pivot to shine the light exactly where you need it. Mirror is on a double ball joint. Batteries included.

Replacement batteries: 2pc CR2032 Lithium

neplacement batte	100. 2pc 01						
Mirror (in)	Mirror	Shaft Material	Handle/Grip Feature	Length (in)	Extended Length (in)	Weight (lbs)	Model No.
2-3/4 x 1-7/8	Glass	Stainless Steel	Non-slip, Solvent Resistant	7-1/2	35	0.25	IMG238L

INSPECTION TOOL KITS

Best of both worlds when you package a telescoping mirror or magnifier with a telescoping Rare Earth magnetic retriever in a foam-lined snap-lock case. These tools have a nonslip, solvent-resistent grip.

Note: MMK200 is Non-telescoping, Non-conductive (Nylon construction, including the grip), and does not come in a case. MMK301 contains a Lighted Magnetic Pick-up Tool, 4-Jaw, 7/16" dia., 8-3/4" Mechanical Finger retriever and a Round Magnifying Inspection Mirror.

Mirror / Magnifier (in.)	Mirror	Lift - Ibs (kg)	Shaft Material	Mirror / Magnifier Length (in)	Magnet Diameter (in)	Magnet Head	Magnet Length (in)	Weight (Ibs)	Model No.
1-1/2 dia.	Glass	1 (0.45)	Nylon	8-1/4	5/16	Swivel	8-1/4	0.05	MMK200
1-3/4 x 2-1/2	Acrylic	14 (6.35)	Stainless	7-1/2 – 34	5/8	Fixed	7-1/2 – 34	0.60	MMK201
1-3/4 x 2-1/2	Acrylic	14 (6.35)	Stainless	7-1/2 – 34	5/8	Swivel	7-1/2 – 34	0.60	MMK203
1-3/4 x 2-1/2	3X Glass Magnifier	14 (6.35)	Stainless	7-1/2 – 34	5/8	Swivel	7-1/2 – 34	0.60	MMK204
2-1/2 dia.	3X Glass	22 (9.97)	Stainless	7 – 36	11/16	Lighted/Fixed	7-1/2 – 32	0.90	MMK301

INSPECTION MIRRORS

INSPECTION MIRROR & RETRIEVING MAGNET COMBINATION TOOLS

Mirror/Magnet combos have a Mirror and a powerful Rare Earth magnet on opposite ends. Use the magnet to retrieve metal items or as a magnetic base to hold the inspection mirror in place, 301G240 has a handy pocket clip. 375G990 has a flexible arm for mirror positioning.

St	tyle	Mirror (in.)	Mirror	Lift - Ibs (kg)	Magnet (in)	Shaft Material	Length (in)	Ext. Ln. (in)	Weight (lbs)	Model No.	Replacement Mirror
	A	2 x 2	Glass	2.0 (0.908)	5/16 Dia.	Chrome Plated Brass	6-1/4	28	0.10	301G240	301RG
	В	1-1/2 Dia.	Glass	2.0 (0.908)	5/16 Dia.	Chrome Plated Brass	6	23-1/2	0.10	306G240	306RG
	С	2 x 1-1/4	Glass	2.0 (0.908)	5/16 Dia.	Chrome Plated Brass	6	24-1/4	0.10	315G240	315RG
	D	3-7/8 Dia.	Glass	20.0 (9.072)	1-1/8 Dia.	Chrome Plated Steel	14-1/4	_	0.24	375G990	375RG
	E	3 x 2	Stainless	7.0 (3.176)	5/8 Dia.	Stainless Steel	8-1/4	38	0.20	314S925	314SS-RH
	F	2-1/2 x 1-7/8	Acrylic	12.0 (5.444)	1/2 Dia.	Stainless Steel	7-3/4	34-1/2	0.25	321A931	321RA

D

С

INSPECTION MIRRORS

These Mirrors telescope or bend, have a slim profile and have joints that can swivel and/or rotate. Models 311 & 317 have a locking hinged mirror that allows for 180° of positioning, 321S-A can be bent to a permanent position or the inside stiffening wire can be removed to snake it into position. The 3714SW is a large dolly mounted inspection mirror with swivel wheels, 3" clearance and a flashlight clip.

Α

Ε

MAG-MAT

Style	Mirror (in.)	Mirror	Shaft Material	Handle/Grip Feature	Length (in)	Ext. Ln. (in)	Weight (lbs)	Model No.	Repl. Mirror
Α	7/8 Dia.	Glass	Nylon	Nylon	8	_	0.01	302	302RG
В	1-1/2 Dia.	Glass	Chrome Plated Brass	Pocket Clip	4-1/2	24	0.07	306TR	306RG
C1	2-1/4 Dia.	Glass	Stainless Steel	Vinyl Grip-Black	7-3/4	14-1/2	0.25	309TR	309RG
C2	2-1/4 Dia.	Glass	Stainless Steel	Non-slip, solvent-resistant	7	36-1/2	0.20	309S1	309RG
D1	2 x 1-1/4	Glass	Stainless Steel	Plunger/Spring	11	_	0.18	311	311RG
D2	2-3/4 x 1-3/4	Glass	Stainless Steel	Plunger/Spring	16-1/4	_	0.20	317	317RG
E	2 x 1	Glass	Stainless Steel	Non-slip, solvent-resistant	6-1/2	36	0.17	315	315RG
F	2-3/4 x 2-1/4	Glass	Stainless Steel	Non-slip, solvent-resistant	7-1/2	36-1/2	0.15	316	316RG
G	3-1/2 x 2-1/2	Glass	Stainless Steel	Non-slip, solvent-resistant	7-1/4	37	0.21	318	318RG
Н	3-7/8 Dia.	Glass	Steel	Non-slip, solvent-resistant	15-3/4	32-1/2	0.51	375	375RG
1	7 x 14	Glass	Aluminum	Vinyl bicycle grip	49	74	5.25	3714SW	3714RG
J	3-1/2 x 2	3x Glass Magnifier	Stainless Steel	Non-slip, solvent-resistant	7-1/4	36-1/2	0.18	316M	316MRG
K	2 x 2	Acrylic	Stainless Steel	Non-slip, solvent-resistant	7	35-1/2	0.21	312A	312RA
L	2-1/2 x 1-7/8	Acrylic	Stainless Steel	Non-slip, solvent-resistant	25	_	0.35	321S-A	321RA

STAINLESS STEEL INSPECTION MIRRORS

Stainless Steel Mirrors are ideal for use in critical areas where foreign objects cannot be left behind. FOD (Foreign Object Debris) free. No worries about glass mirrors breaking in sensitive areas such as engines, fuel lines and machinery. Great for high heat areas. Telescoping shafts and nonslip, solvent resistant grips on all except IMS103 & IMS105 that have Knurled Handles & bendable shafts. IMS103, IMS105 & IMS234 are non-framed and can be used in liquid/solvent applications.

Style	Mirror (in)	Shaft	Handle Grip/Feature	Ln.(in)	Ext. Ln. (in)	Wt. (Ibs)	Model No.	Repl. Mirror	С
A1	3/8 Dia.	Copper	Knurled Aluminum	11-1/2	_	0.02	IMS103	N/A	
A2	1/2 Dia.	Copper	Knurled Aluminum	12	_	0.02	IMS105	N/A	D
B1	1-1/4 Dia.	Stain. Steel	Non-slip, solvent-resistant	7	35	0.15	IMS115	IMS115RS	-
B2	2-1/4 Dia.	Stain. Steel	Non-slip, solvent-resistant	7	36	0.15	IMS123	IMS123RS	
С	2 x 1	Stain. Steel	Non-slip, solvent-resistant	7	36	0.15	IMS210	IMS210RS	
D	2 x 2	Stain. Steel	Non-slip, solvent-resistant	7	35-1/2	0.15	IMS223	IMS223RS	Е
Е	3 x 2	Stain. Steel	Non-slip, solvent-resistant	7	37	0.18	IMS234	IMS234RS	

READ RITE[™] INSPECTION MIRROR

The Read Rite[™] Inspection Mirror shows the numbers, letters and more as they would appear if they were visually accessible by the eve (non-inverted), eliminating deciphering or transcription errors and providing the utmost accuracy in observation. Using a typical inspection mirror to read important numbers can lead to uncertainty or inaccuracy due to the inverted appearance of the image.

- » Stainless Steel Mirror No glass to break
- » Dual-sided: Read Rite[™] mirror on one side, regular inspection mirror on the other side
- » Telescoping Hex rod shaft prevents mirror from swinging while in use
- » Double Ball Hinge with adjustable tension, 360° rotation

Mirror (in) Mirror Shaft Handle/Grip Type Length (in) Extended Length (in) Weight (lbs) Model No. **Replacement Mirror** Stainless Steel Zinc Plated Non-slip, solvent-resistant 3-1/2 x 2 15-1/2 390SS 390RS 28-1/2 0.50

TIA DA*B*

TOLL FREE imi@magnetics.com

В С D

A

MAGNETIC RETRIEVERS & MECHANICAL FINGERS

E F G H II I2 JI J2 K

POCKET TOOLS & RETRIEVERS

E

Ideal for reaching behind, underneath or around machinery and/or difficult to reach areas. The Fixed Shaft and Telescoping Shaft Magnetic Retrievers feature several Magnet Head styles that include the Fixed Head, Single Ball Swivel Head and the Double Ball Swivel Hinge Head that allow for more control and functionality. Powerful Rare Earth magnet material, except where noted. All Rare Earth tools have a maximum temperature of 180°F (82°C).

Ļ

М

Ν

0

Ρ

Q

R

Ŵ

S

ရိစစစစစစ စ စ စ စ									Fixed Head
_	Fixed Shaft Retrievers & Tools Description		_ift - lbs (,	Shaft				Model No.
A	Key chain retriever. Powerful Rare Earth magnet encased in an Aluminum Rod.		4.0 (1.81		AL	3/8	2	0.03	KCR375
В	Pen sized magnetic tool. Sturdy clip holds magnet firmly in pocket.		2.5 (1.13		AL	5/16	6	0.06	906
C D	Double Ball Swivel Hinge Head. Non-conductive Nylon handle.		1.0 (0.45	/	NY	5/16	8-1/4	0.05	909
D	Precision ground carbide tip scribe is reversible with magnet on the opposite end.		2.5 (1.13	4)	AL	5/16	5	0.05	92CLP
	Telescoping Shaft Retrievers & Tools Description			Shaf	t Dia. (in) Ln. (i	n) Ext. (ir	n) Wt. (Ibs)	Model No.
Е	Stainless steel Pen-size pilot lighter with match holding alligator clip.		N/A	SS	1/4				PLO1
F	Double Ball Swivel Hinge Head. Hex rod prevents magnet from swinging while in use.		(3.402)	ZP	1/2		26-1/2		927
G	Double Ball Swivel Hinge Head. Hex rod prevents magnet from swinging while in use.		(5.443)	ZP	1/2		26	0.44	931
Н	Stainless steel Pen-size tool for tiny jobs. Comes with pocket clip.		(0.907)	CP	5/1				240N
11	Magnetic retriever with Single Ball swivel head & nonslip solvent-resistant comfort grip.		(3.175)	SS	5/8		35	0.19	925
12	Same as Model No. 925 in Hi-Vis orange.		(3.175)	SS	5/8		35	0.19	925HVO
J1	Magnetic retriever with fixed head and nonslip solvent-resistant comfort grip.		(2.268)	SS	3/8			0.14	923
J2	Same as Model No. 923 in Hi-Vis orange.		(2.268)	SS	3/8			0.14	923HVO
J1 J2	Magnetic retriever with fixed head and nonslip solvent-resistant comfort grip.		(3.175)	SS SS	5/8 5/8			0.18 0.18	924 924HVO
JZ J1	Same as Model No. 924 in Hi-Vis orange. Magnetic retriever with fixed head and nonslip solvent-resistant comfort grip.		(3.175)	ZP	5/c 1-1/			0.18	924HVO 990SM
	Extra-long, heavy duty, retriever magnet with fixed head & nonslip solvent-resistant		(9.072)						
J1	comfort grip.	14.0	(6.350)					0.42	926
	Flexible/Bendable Shaft Retrievers & Tools Description		ift - Ibs (k					. ,	Model No.
K	Rigid retrieving tool that becomes flexible by removing wire rod from the shaft.		1.5 (0.680	/	ZP	5/16	18	0.18	918F
L	Flexible retriever with fixed head and nonslip solvent-resistant comfort grip	1	8.0 (3.629))	ZP	1/2	21	0.25	921
M1	Flexible, dual purpose allows you to get in and around awkward spots. Bend shaft to a permanent position or remove inside wire to snake into position. Flexible, dual purpose allows you to get in and around awkward spots. Bend shaft to a		3.0 (1.361	,	ZP	3/8	20	0.31	928S
M2	permanent position or remove inside wire to snake into position.		7.0 (3.175	5)	ZP	5/8	20	0.35	929S
Ν	Bendable retriever that holds its shape. Magnet is retracted until the button is pushed.	a t	2.0 (0.907	<i>′</i>	ZP	5/16	17	0.26	915RM
0	Flexible retriever has a spring shaft that allows it to snake through tight areas. The magnet is retracted until the button is pushed.	4	2.0 (0.907	·	ZP	3/8	24	0.29	922RM
P1	Bendable copper shaft magnetic retriever. Fits into tight spots. Knurled aluminum handle		3.0 (1.361		CO	5/16	25	0.11	900WF
P2	Bendable copper shaft magnetic retriever. Fits into tight spots. Knurled aluminum handle	e. (0.5 (0.227	7)	CO	0.175	20	0.08	900WFT
	Mechanical Finger Retrievers & Tools Description		Lift - Ibs	(kg)	Shaft	Dia. (in)	Ln. (in)	Wt. (Ibs)	Model No.
Q	Flexible 2-jaw Mechanical Finger with spring/plunger handle control. Finger span of 1"		12.0 (5.4		ZP	3/8	17	0.25	715CF
R1	Flexible 4-jaw Mechanical Finger with spring/plunger handle control. Finger span of 1"		10 (4.53	36)	ZP	1/2	13-1/2	0.20	612
R2	Flexible 4-jaw Mechanical Finger with spring/plunger handle control. Finger span of 1"		10		ΖP	1/2	23-1/2	0.30	622
S1	Rigid 2-jaw Mechanical Finger with spring/plunger handle control. Finger span of 1".		12.0 (5.4		ZP	3/16	8	0.15	708
S2	Rigid 2-jaw Mechanical Finger with spring/plunger handle control. Finger span of 1".		12.0 (5.4		ZP	3/16	12	0.22	712
Shaf	t Material: AL = Aluminum, CO = Copper, CP = Chrome Plated Steel, NY = Nylon, SS	S = S	tainless	Steel	& ZP =	Zinc Pla	ted Steel	•	-

LIGHTED MAGNETIC PICK-UP TOOL

MAG-MATI

AUTOMOTIVE & APPLIANCE TOOLS

SPARK PLUG BOOT PLIERS

Insulated spark plug boot pliers grip boot to prevent wire damage, electrical shock and burns.

FEATURES:

- » Pliers handle and jaws are coated with a 90 durometer heavy-duty plastic for a sure grip
- » PLS140 is ideal for use against the fire wall and on minivans
- » PLS100S contains one of each pair of pliers. Be ready for any difficult to reach boot.

NYLON FUSE PULLERS/INSTALLERS

		PLS100 PLS110	PLS120	PLS130 PLS14	0 PLS200N
Description	Jaw Length (in)	Jaw Width (in)	Length (in)	Weight (lbs)	Model No.
5 Piece Set - Spark Plug Boot Pliers (1 of ea. model)	_	_	_	2.85	PLS100S
Spark Plug Boot Pliers - 45° Angle	3	1-1/8	9-3/4	0.50	PLS100
Spark Plug Boot Pliers - Straight	2-3/4	1-1/8	9-1/2	0.50	PLS110
Spark Plug Boot Pliers - Straight	4-1/4	1-7/8	11	0.60	PLS120
Spark Plug Boot Pliers - 45° Angle	4-1/4	1-7/8	11	0.60	PLS130
Spark Plug Boot Pliers - 90° Angle	4	2	10-1/4	0.65	PLS140
Nylon Spark Plug Boot Pliers - 20° Angle	2-1/4	5/8	7	0.10	PLS200N
	Ba				An

PUSH PIN PLIERS

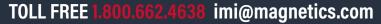
Quickly remove plastic push pin anchors with center locking pin without damage to pins, anchors, fasteners or retainers.

FEATURES: » Steel frames with spring return	PLP100
 » Black oxidized to resist rust » Quick clean vinyl grip 	PLP120
Push	PLP110

Overall Length (in)	Weight (lbs)	Model No.
_	1.35	PLP100S
9-3/4	0.45	PLP100
9-1/2	0.45	PLP110
9	0.45	PLP120
	9-3/4 9-1/2	- 1.35 9-3/4 0.45 9-1/2 0.45

Remove and install hard to reach or difficult to pull fuses. Fully insulated,	•
100% non-conductive Nylon pliers with	
protect fingers. PLF100 is used on Flat	
blade type fuses in Automotive, ATO and mini fuses. PLF200 is for 1/2" to 1" glass)
fuses in vintage automotive, appliance	
and industrial fuse application. Hook on end of grip pulls midget fuses.	
(the second sec	

Description	Length (in)	Weight (lbs)	Model No.
Flat Blade Fuse Puller/Installer	6	0.05	PLF100
Glass Fuse Puller/Installer	7-1/8	0.10	PLF200


HOSE CLAMP PLIERS

Swivel jaws are slotted for positive holding/removal of plastic and or metal constant tension hose clamps. Jaws rotate 360° to grip at any angle and can be locked in three holding positions, freeing up hands.

FEATURES:

- » Quick clean vinyl grip
- » Finger tip locking pawl
- » PLC200 is for use on Ford, GM, Chrysler, VW and other import vehicles for constant tension/Mobea (flat band) clamps
- » PLC210 is for use on vintage automotive and agricultural vehicles, appliances, irrigation/ spraying systems, or Corbin (single wire) clamps
- » PLC220 has universal tips, right or left facing clamp for constant tension Mobea clamps

Description	Length (in)	Weight (lbs)	Model No.
Automotive Hose Clamp - Straight	9	0.45	PLC200
Automotive/Agriculture/Appliance Hose Clamp - Straight	9	0.45	PLC210
Extra Large Automotive Hose Clamp - 45° Angle	10-1/2	0.55	PLC220
Extra Large Automotive Hose Clamp - Straight	10-1/2	0.55	PLC230

WELDING ANGLES & CLAMPING DEVICES

MAG90[™] ON/OFF MAGNETIC SQUARES

On/Off Switchable Permanent Rare Earth Magnetic Squares are extremely powerful and eliminate the need for tedious clamping. The Mag90[™] squares offer fast work-holding on multiple sides for flat or round steel. Features pre-tapped holes on all sides for mounting and a locking On/Off handle for safety.

WSP0150R

WSF275X3

	Max Hold - Ibs	(kg)	Overall	•			and the second s			
Flat Steel	Round Steel	Min. Diameter (in)		Height (in)	Width (in)	Length (in)	Тар	Tap Depth (in)	Weight (lbs)	Model No.
150 (68.04)	75 (34.02)	1-1/2	2-3/4	1-1/8	1-1/2	1-1/2	#8-32	0.330	0.80	WS0150R
450 (204.12)	225 (102.06)	2	4-5/8	2-3/4	2-1/2	3	1/4-20	0.500	4.30	WS0450R
1000 (453.60)	500 (226.79)	4	4-3/4	3	4	4-1/4	3/8-16	0.625	10.45	WS1000R

ON/OFF MAGNETIC WELDING ANGLES

On/Off Switchable, Permanent Rare Earth Magnetic Welding Angles. Welders set up, weld and quickly move on to the next project. Simply place on work surface, turn on and start welding. On/ Off magnets easily allows debris to fall away. Can be used on flat or round steel or cast iron. Nonmarring hold. Stainless steel construction.

FEATURES:

- » WSP0150R pivots to angles ranging from 22° to 270° with locking handle and detents. Hold on 3 sides.
- » WSF0150R & WSF0450R have slots allowing for guick-slide adjustment or addition of more magnetic bases. Reversible for inside or outside hold.
- » WSF275X3 ON/OFF holds 3 sides.

Hold - Ibs (kg)	Angle Type	Height (in)	Width (in)	Length (in)	Weight (lbs)	Model No.
150 (68.04)	Pivoting	9-5/8	2-1/8	9-5/8	4.30	WSP0150R
150 (68.04)	90°	8-1/4	2-7/8	8-1/4	3.60	WSF0150R
450 (204.12)	90°	12-1/4	3-7/8	12-1/4	6.80	WSF0450R
275 (124.74)	90°	7-1/4	1-5/8	7-1/4	5.00	WSF275X3

ON/OFF SWITCHABLE MAGNETIC WELDING SQUARES

FEATURES:

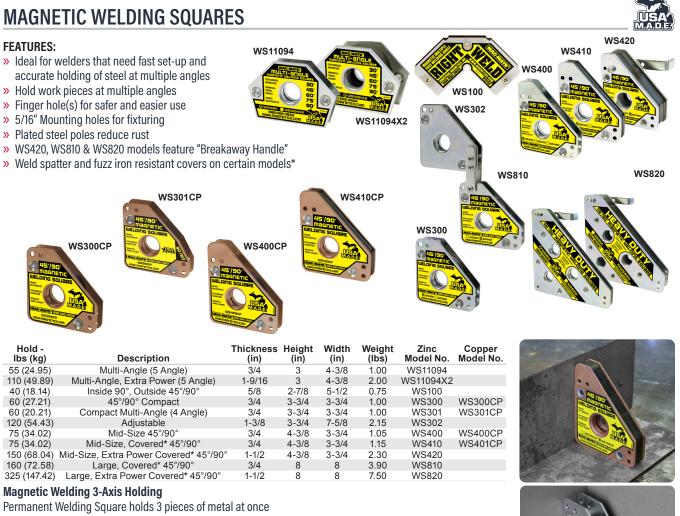
- » 5 common angles: 45, 75, 90, 105 & 135 degrees
- » WSM0150RG is a dual purpose tool, utilizing multi-angle weld square and a 300 AMP welding ground all in one. Fits 1/2 inch bolt.
- » Stays clean and chips fall off easily when magnet is turned off
- » Heat resistant up to 180°F (82°C)

Hold - Ibs (kg)	Height (in)	Width (in)	Length (in)	Weight (lbs)	Model No.	
65 (29.54)	2-1/8	2-1/8	3-1/2	1.6	WSM0150R	
65 (29.54)	2-1/8	2-1/8	3-1/2	1.6	WSM0150RG	

BUTT WELD MAGNETIC CLAMP SET

Unlike other butt weld clamps, these clamps utilize two powerful Rare Earth magnets to securely hold work pieces during setting up. Magnetic feet swivel for curved surface. Ideal for automotive body panel repairs, tanks/containers, or flat welding. Standard 1/4" clamp bar is replaceable with custom bars to match contours.

FEATURES:


- » Gap between panels, 0.03"
- » Works with materials up to 3/8" thick
- » Sold in set of 2 clamps

Hold Each - Ibs (kg)	Length (in)	Magnet Height (in)	Overall Height (in)	Width (in)	Weight (lbs)	Model No.
6.3 (2.9)	2-1/4	1	2-1/4	1	0.45	WBC1PK2

WELDING ANGLES & CLAMPING DEVICES

Ideal for holding support brackets, gussets, etc.

Third side has 42lb max hold

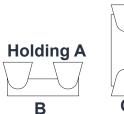
WS410AX3 has weld splatter, fuzz iron resistant cover

Hold - Ibs (kg)	Description	Thickness (in)	Height (in)	Width (in)	Weight (lbs)	Model No.
55 (24.95)	Multi-Angle	1-1/8	3	4-3/8	1.00	WS11094AX3
60 (27.21)	Compact	1-1/8	3-3/4	3-3/4	1.00	WS300AX3
60 (20.21)	Compact Multi-Angle	1-1/8	3-3/4	3-3/4	1.00	WS301AX3
75 (34.02)	Mid-Size	1-1/8	4-3/8	3-3/4	1.05	WS400AX3
75 (34.02)	Mid-size Covered	1-1/8	4-3/8	3-3/4	1.20	WS410AX3

MULTI-POSITIONING MAGNETIC V-PAD CLAMPS

One of the best tools a welder could have. These magnetic V pads hold steel in almost any angle. Each clamp has a pivoting pad at each end to hold workpiece at angles up to 180°.

- » Powerful Rare Earth Magnets
- » Each Pad contains 4 magnets
- » Great for holding round stock


Holding Value - lbs (kg)

20

С

TOLL FREE

» Sold in set of 2 V-Pads

Weight (lbs)

Set

Model No.

imi@magnetics.com

WVP1PK2

~	D	0	Lengui	www.uum	neight	Jei	model No.	
15 (6.8)	8.5 (3.9)	6.3 (2.9)	2-1/4	1	1	0.30	WVP1PK2	
29 (13.2)	8.5 (3.9)	15 (6.8)	2-1/2	1-1/2	1-1/8	0.60	WVP2PK2	

Dimension (in)

Length Width Height

WELDING HOLDERS DEVICES

SQUARE BUDDIES

Square buddies are a unique and innovative tool designed to greatly improve the accuracy and quality of pipe fabrication by simply using a common framing square and enabling it to be used easily and efficiently on pipe. This magnetic base set allows a pipe fitter to use the square independently, hands free to perform precise measurements.

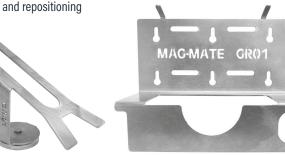
- » Provides a hands-free, level framing square base for Pipe and Tube Fabrication
- » Improves accuracy of square weldments when fitting and steel welding pipe or tube
- » Reduces set-up time and allows for hands-free measurements
- » Powerful magnets hold the square steel pipes or tubes in any orientation
- » Adjustable magnet positions for pipes from 2" 0.D. up to 12" 0.D.
- » Thumb Screws allow for quick set up and firm holding of your framing square
- » Sold as a pair, magnets and hardware included

Overall Length (in	Height Range) (in)	Width Range (in)	Weight (lbs)	Model No.
3	5.25 - 5.93	8.14 - 9.24	5.25	WSB02M

WELD TORCH HOLDERS

FEATURES:

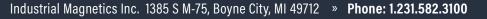
- » Securely and neatly hold welding torch in place on the top, side or underside of work bench or nearby steel structure
- » Stainless steel holder, plated steel magnetic base
- » Magnetic base allows for quick and easy repositioning


Hold - Ibs (kg)	Magnet Diameter (in)	Torch Type	Height (in)	Width (in)	Weight (lbs)	Model No.
41 (18.59)	2.63	TIG	6-3/4	3-1/8	0.75	WTHT01
47.5 (21.54)	3.18	MIG	5-3/4	4	0.90	WTHM01

GRINDER TOOL HOLDERS

Keep your grinder handy on top or side of steel work benches. Two attachment options available with screws or magnets. Powerful permanent magnet holds up to 6" diameter grinder wheels in horizontal or vertical positions, regardless of trigger location.

FEATURES:


- » Sturdy stainless steel holder
- » Keep grinder protected and close by
- » Magnetic base option allows for quick placement and repositioning

PRESS BREAK & JIG TOOLS

MAGNETIC SQUARING ARM - PRESS BRAKES

Set-up a variety of bends faster and more accurately. The Magnetic Squaring Arm for Press Brakes features an adjustable arm that locks into place for easy, repeatable part positioning. The sturdy platform and a magnetic arm also helps to support and hold parts, keeping operators fingers clear of the press.

FEATURES:

- » Powerful Rare Earth Magnets hold Squaring Arm tight to die surface
- » Arm swings and locks from 90° to 20° in two directions allowing for 140° in set-up adjustment
- » Adjustable handle secures arm at proper angle and moves out of the way
- » Locator rule on leading edge helps locate squaring arm
- » Stainless Steel/Aluminum construction
- » Safety strap prevents squaring arm from falling off if accidentally knocked off die

Hold - Ibs (kg)	Height (in)	Width (in)	Length (in)	Weight (Ibs)	Model No.
90 (40.82)	2-5/8	7-1/4	14	5	MSAP01

MAGNETIC SQUARING ARM - SHEARS

FEATURES:

- » Increase shear blade life by utilizing the entire blade length
- » Quickly set-up consistent angle cuts on your shear
- » Powerful On/Off rare earth magnets allow for fast installation
- » For extra strength, an additional magnet can be added in the center
- » On short shear beds one magnet can be moved to the center for a positive hold
- » Stainless Steel construction

(in)

1.25

1.25

1.25

1.25

1.18

1.57

2.25

2.64

(in)

1.00

1.00

0.75

0.75

 Hold - Ibs (kg)
 Overall Height (in)
 Edge Height (in)
 Width (in)
 Length (in)
 Weight (lbs)
 Model No.

 300 (136.07)
 2-5/8
 3/4
 2-1/4
 12
 2.25
 MSAS01

Overall Dimensions

Height(in) Width (in) Length (in)

0.85

1 25

0.85

1.25

ON/OFF RARE EARTH JIG MAGNETS

FEATURES:

- » Easy On/Off controls for fast, strong, and precise positioning
- » Use at least two per fixture; add more for even greater holding force.

Magnet Dia.

(mm)

30

40

30

40

2.18

2 18

2.18

2.18

(in)

1.18

1.57

1.18

1.57

- » Jigs flange 0.50" thick secured with two #8 screws (hole size 0.194) will mount flush on 3/4" board – Use 40mm Forstner bit for large Jigs & 30mm for small Jigs.
- » Mounting hole spacing: JF095R 1.811", JF155R 2.205"

Hold - Ibs (kg) Description

Non-Flange

Non-Flange

Flanged

Flanged

TOLL FREE

95.0 (43.09)

155.0 (70.30)

95.0 (43.09)

155.0 (70.30)

imi@magnetics.com magnetics.com

(lbš)

0.30

0 55

0.35

0.60

No. JP095R

JP155R

JF095R

JF155R

37

MAG-MATE® WELDING SQUARES, GROUNDS & TOOLS

MAGNETIC WELDING GROUNDS

FEATURES:

- » Powerful magnet attaches securely to steel work surfaces
- » Spring-loaded 1/2" Diameter stud assures constant electrical ground contact
 » Belease handle

Hold - Ibs (kg)	Dia. (in)	Height (in)	Amps	Stud	Weight (lbs)	Model No.
35 (15.88)	3-1/2	2-1/4	250	Brass	1.50	WG250
35 (15.88)	3-1/2	2-1/4	800	Copper	1.50	WG800

ON/OFF MAGNETIC WELD GROUNDS

On/Off Switchable Permanent Rare Earth Magnetic Grounds let welders set up, weld and quickly move on to the next project. Makes welding quicker and easier than ever before. Will work on flat or pipe.

Bolt: 1/2-13 x 1-1/4" Long

Hold - Ibs (kg)	Height (in)	Width (in)	Length (in)	Amps	Weight (Ibs)	Model No.	
150 (68.04)	2-3/4	1-13/16	2-7/8	200	0.90	WG200R	
150 (68.04)	2-3/4	1-15/16	2-7/8	300	0.95	WG300R	
450 (204.12)	4-5/8	3	5	800	4.90	WG800R	

ON/OFF MAGPRY[™]

Strong, easy to use, On/Off switchable magnetic pry bar for material leveling and alignment also known as mismatch or high/low allowing for rapid and easy plate matching for seamless welds on flat and pipe. Perfect for all plate and seam work, under foot, on vertical surfaces, even overhead. The Mag-Pry[™] eliminates need for welded tabs. Up to 100 times faster than dogs and wedges saving you time and money, pays for itself in days. Non-marring.

 Hold - Ibs (kg)
 Height (in)
 Width (in)
 Length (in)
 Weight (lbs)
 Model No.

 1000 (453.60)
 3-1/2
 5-7/8
 19
 10.0
 PB1000R

MAGNETIC WELDING WIND BLOCK

FEATURES:

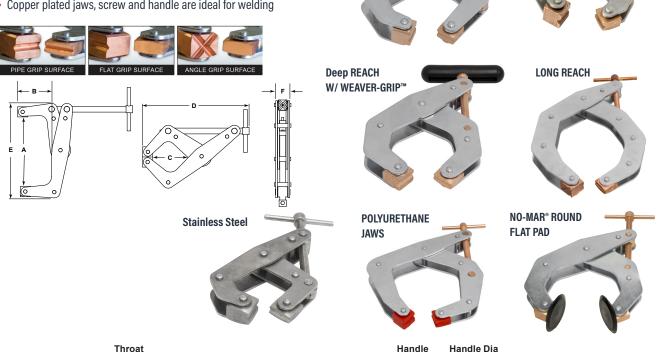
- » Powerful permanent magnets
- » Prevents loss of gas coverage
- » Stainless steel with flat black finish
- » Reduces arc flash
- » Spring load holds tight to surface, horizontally, vertically or inverted

 Hold - Ibs (kg)
 Overall Height (in)
 Height (in)
 Width (in)
 Length (in)
 Weight (lbs)
 Model No.

 50 (22.68)
 8.33
 7.09
 2.88
 24
 2.50
 WWB24

 50 (22.68)
 8.33
 7.09
 2.88
 36
 3.00
 WWB36

Round Handle


CANTILEVER CLAMPS

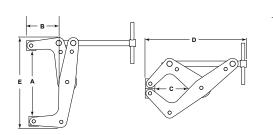
KANT-TWIST[®] CANTILEVER CLAMPS

FEATURES:

- » Will not "walk-off-center"
- » Eliminates distorting and twisting action of C-clamps
- Cantilever design provides 4:1 clamp ratio
 Three different gripping surfaces
 Built-in "V" block for round stock

- » Free floating jaws adjust to uneven surfaces
- » Copper plated jaws, screw and handle are ideal for welding

Standard T-Handle


Jaw Capacity A (in)	Throat Depth Open B (in)	Depth Closed C (in)	Overall Length D (in)	Width Open E (in)	Thickness F (in)	Max Clamp Force (lbs)	Handle Diameter & Length (in)	Handle Dia & Length w/Weaver- Grip™ (in)	Weight (Ibs)	Model No.	Model No. With Weaver-Grip™
				Round Hand	le. Ideal for '	'fine tuning"	clamping for	ce			
3/4	3/8	3/8	1-3/4	1-3/8	7/16	200	5/8	N/A	0.06	K007R	N/A
1	1/2	1/2	2-1/4	1-7/8	1/2	350	3/4	N/A	0.1	K010R	N/A
1-1/2	1	1	3-3/4	3-1/8	5/8	600	1-1/8	N/A	0.29	K015R	N/A
2	1-1/4	1-1/4	4	3-1/4	7/8	800	1-1/8	N/A	0.46	K020R	N/A
2-1/2	1-3/4	1-13/16	4-1/2	4-1/16	7/8	700	1-1/8	N/A	0.51	K025RD	N/A
					Standar	d T-Handle					
1	1/2	1/2	2-1/8	1-7/8	1/2	350	1/8 x 1	1/2 x 1-1/2	0.09	K010T	K010TW
2	1-1/4	1-1/4	4	3-3/8	7/8	800	1/8 x 1-3/4	11/16 x 2-1/2	0.42	K020T	K020TW
3	1-3/4	1-1/2	6-1/4	5-1/4	1-1/8	1500	1/4 x 3	7/8 x 4	1.15	K030T	K030TW
6	2-1/8	3	9-1/4	8-1/2	1-3/8	2000	5/16 x 3-3/4	1-1/8 x 5	2.78	K060T	K060TW
9	3-3/4	4-3/4	14-1/2	13	1-5/8	2500	3/8 x 6	N/A	7.15	K090T	N/A
12	5-1/2	6-1/2	17-3/4	16	2	6000	3/8 x 6	N/A	13.9	K120T	N/A
				Reach - Extenc							
2-1/2	1-3/4	1-13/16	4-1/2	4-1/16	7/8	700	1/8 x 1 3/4	11/16 x 2-1/2	.51	K025TD	K025TDW
4-1/2	2-3/8	2-5/8	7-1/2	7	1-1/8	1700	1/4 x 3	7/8 x 4	1.75	K045TD	K045TDW
6	5	5	11-1/2	10	1-3/8	2000	5/16 x 3 3/4	1-1/8 x 5	3.75	K060TD	K060TDW
10	6-1/2	7	17	15	1-3/4	3500	3/8 x 6	N/A	11.35	K100TD	N/A
				ch T-Handle -							
4-1/2	5-5/8	5-1/8	9-7/8	8-1/2	1-7/32	680	1/4 x 3	7/8 x 4	2.33	K045TL	K045TLW
6-1/2	8-5/8	8-3/4	13-5/16	12-3/4	1-7/16	845	5/16 x 3 3/4	1-1/8 x 5	4.45	K060TL	K060TLW
								netic applicati			
2	1-1/4	1-1/4	4	3-1/4	7/8	700	1/8 x 1-3/4	11/16 x 2-1/2	.42	K020TS	K020TSW
3	1-1/4	1-1/2	6-1/4	5-1/4	1-1/8	1200	1/4 x 3	7/8 x 4	1.14	K030TS	K030TSW
4-1/2	2-3/8	2-1/2	7-1/2	6-3/4	1-1/8	1500	1/4 x 3	7/8 x 4	1.74	K045TSD	K045TSDW
6	5	5	11-1/2	10	1-3/8	2000	5/16 x 3 3/4	1-1/8 x 5	3.75	K060TSD	K060TSDW
								or polished me			
3/4	1/2	1/2	2-1/2	1-3/4	1/2	350	1/8 x 1	1/2 x 1-1/2	0.1	K010TP	K010TPW
1-3/4	1-1/8	1-1/4	4-1/2	3-1/4	1-3/8	800	1/8 x 1-3/4	11/16 x 2-1/2	0.46	K020TP	K020TPW
2-1/4	1-3/4	1-13/16	4-1/2	4-1/16	1-3/8	700	1/8 x 1-3/4	11/16 x 2-1/2	.51	K025TPD	K025TPDW
2-3/4	1-1/4	1-3/4	6-3/4	5	1-7/8	1500	1/4 x 3	7/8 x 4	1.26	K030TP	K030TPW
4-1/8	2-1/4	2-1/2	8-1/4	6-3/4	1-7/8	1700	1/4 x 3	7/8 x 4	1.87	K045TPD	K045TPDW
								o 75 on Shore			
3	1-1/4	1-3/4	6-3/4	5	1-1/8	1125	1/4 x 3	7/8 x 4	1	K030TU	K030TUW
4-1/2	2-1/4	3-13/16	8-1/4	7	1-1/8	1275	1/4 x 3	7/8 x 4	1.61	K045TUD	
6	4-1/2	5-1/2	11- 1/2	10	1-3/8	1500	5/16 x 3-3/4	1-1/8 x 5	3.58	K060TUD	K060TUDW

CANTILEVER CLAMPS

DEEP REACH CLAMPS IN HIGH VISIBILITY YELLOW

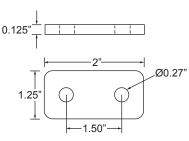
Easily see clamps in action or find them quickly. Helps prevent tools left in critical areas where foreign objects cannot be left behind. FOD (Foreign Object Debris) free.

Jaw Capacity A (in)	Throat Depth Open B (in)	Throat Depth Closed C (in)	Overall Length D (in)	Width Open E (in)	Thickness F (in)	Max Clamp Force (lbs)	Handle Diameter & Length (in)	Handle Dia & Length w/Weaver- Grip™ (in)	Weight (Ibs)	Model No.	Model No. With Weaver-Grip™
2-1/2	1-3/4	1-13/16	4-1/2	4-1/16	7/8	700	1/8 x 1 3/4	11/16 x 2-1/2	.51	K025TDHVY	K025TDHVYW
4-1/2	2-3/8	2-5/8	7-1/2	7	1-1/8	1700	1/4 x 3	7/8 x 4	1.75	K045TDHVY	K045TDHVYW
6	5	5	11-1/2	10	1-3/8	2000	5/16 x 3 3/4	1-1/8 x 5	3.75	K060TDHVY	K060TDHVYW

4-IN-1, "MULTIPLE-JAW" DEEP REACH CLAMPS

Each deep-reaching, Multiple-Jaw clamp offers four clamping options to accommodate the different surfaces of your work pieces: flat, pipe, angled or non-marring. Simply rotate the clamp's jaws to match the surface style of your part. The polyurethane grip option can be used on polished or painted metals, wood, plastic, aluminum, or any soft material.

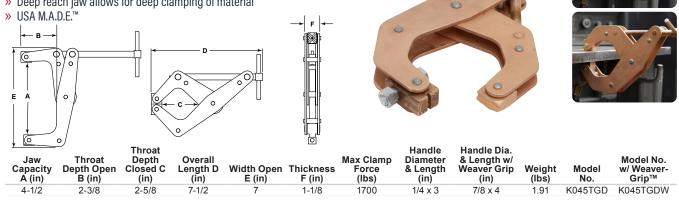
GLE GRIP SURFACE



Jaw Capacity A (in)	Throat Depth Open B (in)	Throat Depth Closed C (in)	Overall Length D (in)	Width Open E (in)	Thickness F (in)	Max Clamp Force (Ibs)	Handle Diameter & Length (in)	Handle Dia & Length w/Weaver- Grip™ (in)	Weight (Ibs)	Model No.	Model No. With Weaver-Grip™
4-1/2	2-3/8	2-5/8	7-1/2	7	1-1/8	1700	1/4 x 3	7/8 x 4	1.75	K045TMD	K045TMDW
6	5	5	11-1/2	10	1-3/8	2000	5/16 x 3 3/4	1-1/8 x 5	3.75	K060TMD	K060TMDW

ADAPTABLE "WIDE FOOT JAW" DEEP REACH CLAMPS

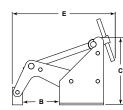
Ideal for clamping material end-to-end or any clamping requirement needing a larger clamping surface. Feet contain mounting holes that adapt to special bracketry needed to hold your work piece, whether it is larger flat brackets or brackets designed to hold odd shaped parts.

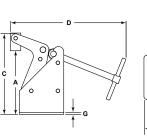

Jaw Capacity A (in)	Throat Depth Open B (in)	Throat Depth Closed C (in)	Overall Length D (in)	Width Open E (in)	Thickness F (in)	Max Clamp Force (lbs)	Handle Diameter & Length (in)	Handle Dia & Length w/Weaver- Grip™ (in)	Weight (Ibs)	Model No.	Model No. With Weaver-Grip™
4-1/4	2-3/8	2-5/8	8	7	1-1/4	1700	1/4 x 3	7/8 x 4	1.85	K045TFD	K045TFDW
5-3/4	5	5	12	10	1-1/4	2000	5/16 x 3 3/4	1-1/8 x 5	3.85	K060TFD	K060TFDW

CANTILEVER CLAMPS

DEEP REACH WELDING GROUND CLAMP

FEATURES:


- » Dual-purpose workpiece clamp and welding ground
- » Contains a 400 AMP weld ground connection
- » No-twist clamp secures workpiece without twisting or "walk-off-center"
- » Copper plated clamp prevents weld spatter from sticking
- » Clamp jaws are beveled to hold both flat or round surfaces
- » Deep reach jaw allows for deep clamping of material



QUICK-ACTING HOLD DOWN CLAMPS ALSO WITH NO-MAR® PADS

FEATURES:

- » Quick Acting Hold Down Clamp
- » More clamping power than ordinary Toggle Clamps
- » Ideal for Drill Presses and Machining Centers
- » Best for holding where thickness and surface are not exact from part to part
- » Spring tension jaw moves quickly out of the way
- » USA M.A.D.E™

W/ WEAVER

GRIP

MAG-MATE[®]

Jaw Opening A (in)					Overall Length Closed E (in)	Flange				Max Clamp Force (lbs)	Handle Diameter & Length (in)	Handle Dia. & Length w/ Weaver-Grip™ (in)	Weight (Ibs)	Model No.	Model No. w/ Weaver- Grip™
3	1-1/2	3-1/2	4	6	5-1/2	2-3/4	1/8	2	1-1/2	1500	1/4 x 3	7/8 x 4	1.15	K030TQ	K030TQW
6	3	6	7	9	8-1/2	3-3/16	3/8	3	2-5/8	3200	5/16 x 3-3/4	1-1/8 x 5	3.7	K060TQ	K060TQW
2-3/4	1-1/2	3-1/2	4	6	5-1/2	2-3/4	1/8	2	1-1/2	1500	1/4 x 3	7/8 x 4	1.15	K030TQP	K030TQPW
5-3/4	3	6	7	9	8-1/2	3-3/16	3/8	3	2-5/8	3200	5/16 x 3-3/4	1-1/8 x 5	3.7	K060TQP	K060TQPW

WEAVER-GRIPS™

FEATURES:

- » Weaver-Grip[™] A High Quality Handle Accessory for Kant-Twist[®] T-Handle Clamps
- » Comfortable Grip for ease of use
- » Makes repetitive use much easier
- » Apply maximum pressure with less effort
- » Very durable high quality ABS plastic
- » Taps easily On and Off
- » USA M.A.D.E.™

Fits Clamps with Jaw Capacity (in)	Fits Clamps with T-Handle Length (in)	Diameter (in)	Length (in)	Weight (Ibs)	Model No.
1	1	1/2	1-1/2	0.01	WG010
2	1-3/4	11/16	2-1/2	0.02	WG020
3 & 4-1/2	3	7/8	4	0.05	WG034
6	3-3/1	1_1/8	5	0.15	WG060

TOLL FREE 1.800.662.4638 imi@magnetics.com

MAG-MATE® LATCHES, BUMPERS & DOOR HOLDERS/STOPS

MAGNETIC DOOR LATCHES

These extremely powerful Rare Earth magnetic latches have a very thin profile. Ideal for door & cabinet applications or for mounting panels, signs, pictures, etc. Plated magnet, washers and screws reduce corrosion. Washers are recessed to allow the screw head to set below the contact area.

FEATURES:

- » ML050 uses 3M VHB Adhesive on the magnet
- » Screw(s) included are #6 x 5/8" long

		Magnet		5	Strike Plate			
Hold - Ibs (kg)	O.D. (in)	Depth (in)	I.D. (in)	O.D. (in)	Depth (in)	I.D. (in)	Weight (lbs)	Model No.
2 (0.91)	0.50	0.06	N/A	0.56	0.070	0.221	0.0001	ML050
13 (5.90)	0.75	0.12	0.18	0.70	0.070	0.221	0.01	ML075
37 (16.78)	0.98	0.31	0.21	1.00	0.070	0.221	0.05	ML098

MAGNETIC RUBBER BUMPERS

Adding a rubber bumper is faster than ever with a magnetic attachment. No more drilling/tapping holes to mount a bumper. Simply attach the magnetic bumper to a steel surface, slide it to the exact location and you are done.

B705W5006

B755W7506

D3X1BL

D3X1BLP

FEATURES:

- » Incredibly strong Rare Earth magnetic hold
- » Abrasion-resistant SBR rubber
- » Durometer is 65A to 80A
- » Temperature range is 0° to 180°F
- » Indoor use only

Hold - Ibs (kg)	Diameter (in)	Length (in)	Weight (lbs)	Model No.
5.0 (2.27)	1/2	3/8	0.01	B705W5006
5.0 (2.27)	5/8	3/8	0.01	B727W5006
15.3 (6.94)	3/4	1/2	0.01	B755W7506
15.3 (6.94)	7/8	5/8	0.05	B116W7506
16.5 (7.48)	1-1/32	3/4	0.05	B785W10006

Powerful Rare Earth magnetic connection systems can be used to hold doors & cabinets in the open position or to attach key rings, knives & tools in both indoor and outdoor applications. Ideal for workshops, home, office, garage, RV or marine settings. Magnets are embedded inside a non-marring housing and come with several different mounting options, including adhesive, screws or rivets.

MAGNETIC CONNECTORS:

- » ABS plastic housing
- » 3M adhesive backing

TRAILER/WALL MOUNT MODELS:

- » Non-marring EPDM* rubber housing
- » Mounting screws included

FLOOR MOUNT MODELS:

- » Non-marring EPDM* rubber housing
- » Powder coated steel floor bracket
- » Mounting screws included 1" L #10 Self-Tapping

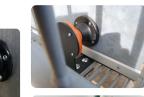
	M	agnetic Connector M	odels (Black or Whi	te)			
Hold - Ibs (kg)	Description	Flange Diameter (in)	Magnet Diameter (in)	Projects (in)	Weight (lbs)	Magnet Color	Model No.
5.5 (2.49)	2 Magnets	1-1/2	3/4	9/16	0.05	Black	D1BL
5.5 (2.49)	2 Magnets	1-1/2	3/4	9/16	0.05	White	D1WH
		Trailer Mou	unt Model				
Hold Ibo (kg)	Decerintian	Elemene Diemeter (in)	Magnat Diamatar (in)	Droinate (in)	Maight (lba)	Mannat Calar	MadalNa
Hold - Ibs (kg)	Description	Flange Diameter (in)	Magnet Diameter (in)	Projects (III)	weight (ibs)	Magnet Color	Model No.
27 (12.25)	1 Magnet, 1 Hardware	3-1/2	1-3/8	1-3/8	0.45	Black	D3X1BL
(0/	•	• • • • •	• • • •	• • •	• • •	•	
27 (12.25)	1 Magnet, 1 Hardware	3-1/2	1-3/8	1-3/8	0.45	Black	D3X1BL

D3X1BKT

Floor Mount Model Hold - Ibs (kg) Description Flange Diameter (in) Magnet Diameter (in) Projects (in) Weight (lbs) Magnet Color Model No. 27 (12.25) 1 Magnet, 1 Plate, 1 Bracket, Hardware 1-3/8 2-3/4 2.20 D3X1BKT 3-1/2 Orange 31 (14.06) 2 Magnets, 1 Plate, 1 Bracket, Hardware 3-1/2 1-3/8 2-3/4 ea 2.45 Orange/Black D3X2BKT

Note: Models with 2 magnets project farther than most door knobs. *EPDM = Ethylene Propylene Diene Monomer (Type of Synthetic Rubber)

ML050


teletetetet

B727W5006

B116W7506

CONNEL

D1BL

D1WH

HANDS-FREE FOOT & ARM PULLS FOR DOORS

FOOT OPERATED, HANDS-FREE DOOR OPENERS

This hands-free device lets you pull open latch-less doors using the sole of your shoe. Reducing the need to touch common surfaces and can help slow the spread of germs and bacteria. Perfect for restrooms and other swing-style doors. Prevents shoe damage and can be used with open toe shoes. Available with either magnetic mount for metal doors, which attaches in seconds and can be repositioned to the perfect spot, or direct through-hole mount for non-metal doors. Available in high-vis yellow (HVY).

FEATURES:

- » Heavy duty, one piece, stainless steel formed construction
- » Indoors or Outdoors

Mounting Hole (in)	Height (in)	Width (in)	Projects (in)	Weight (lb)	Color	Through Hole Mount
0.2" (1/4-20)	5	2-1/2	4	0.9	Silver	FP01
0.2" (1/4-20)	5	2-1/2	4	0.9	Yellow	FP01HVY
Hold – Lbs. (kg)	Height (in)	Width (in)	Projects (in)	Weight (lb)	Color	Magnet Mount
80 (36.29)	5	2-1/2	4-3/8	1.5	Silver	FP01M
80 (36.29)	5	2-1/2	4-3/8	1.5	Yellow	FP01MHVY
						0

ARM OPERATED, HANDS-FREE DOOR OPENERS

This hands-free device lets you pull open latch-less doors using your forearm, wrist or elbow - so users don't have to touch common surfaces to help reduce the spread of germs and bacteria. Perfect for public restrooms and other swing-style doors. Available with either magnetic mount for metal doors, which attaches in seconds, or direct through-hole mount for non-metal doors. Mount approximately 40-45" from the floor. For hollow core doors, use through bolts.

FEATURES:

- » Heavy duty, one piece, stainless steel formed construction.
- » Position Arm Pull either pointing up, down or sideways.
- » Indoors or Outdoors

					Model No.
Mounting Hole (in)	Height (in)	Width (in)	Projects (in)	Weight (lb)	Through Hole Mount
0.27" (1/4-20)	5	2-1/2	5-3/8	1.69	AP01
Hold – Lbs. (kg)	Height (in)	Width (in)	Projects (in)	Weight (lb)	Magnet Mount
80 (36,29)	5	2-1/2	5-11/16	2.02	AP01M

FOR LATCHED DOORS - HANDS-FREE DOOR OPENER

The J-Hook can be used to hold the door handle in the open position - converting it into a latchless-style door that can be used with the Foot or Arm Pull. The J-Hook attaches directly to steel doors. For non-steel doors, use our MX0870 Magnetic-Stainless Disk that you can mount to your door.

Universal J-Hook Magnet

MX2000JH

FLEXIBLE FLASHLIGHT HOLDER

When you need to use both hands and there is nobody to hold a light for you, these magnetic based flexible flashlight holders will come to the rescue. Strong magnetic hold is easily repositioned. Flexible neck lets you pinpoint the light right where you need it. MX25FLVB02 fits typical Mag-Lite® flashlights. Flashlights not included.

TOLL FREE

Hold - Lbs. (kg)	Open Range (in)	A (in)	B (in)	C (in)	Weight (lbs)	Model No.
42 (19.1)	0.62 - 1.25	2.03	8.50	7.87	0.25	MX20FLNP01
42 (19.1)	1.00 - 1.50	2.03	9.00	8.00	0.25	MX20FLZP02
80 (36.3)	1.50 - 1.87	2.63	10.75	9.75	0.55	MX25FLVB02

SPARE HAND

Spring clamp with a flexible chrome plated steel shaft and a magnet base that can hold lights, books, prints, spray nozzles & more. Magnet base doubles as a magnetic retriever.

Max	Lift -	Mag Head	Length	Weight	Model No.
Opening (in)	Ibs (kg)	Diameter (in)	(in)	(in)	
1-1/4	20.0 (9.072)	1-1/8	13	0.45	990FLXCLP

FP01HVY

FP01M

AP01M APO1 MAG-MATE APO1M

magnetics.com

А

MAGNETS IN LIQUID & DEMAGNETIZERS

NAIL & SCREW HOLDER

Never hold nails in your mouth again. Handy magnetic wristband nail &screw holder provides a safe and convenient place to keep fasteners and small tools.

FEATURES:

» Prevents dropping of tools or fasteners

 Type
 Cup Dia. (in)
 Cup Height (in)
 OAH (in)
 Weight. (lbs)
 Model No.

 Wristband
 2-1/32
 5/16
 0.390
 0.24
 MX2000W

MAG-MAID COOLANT CLEAN OUT TOOL

This powerful Rare Earth clean-up tool safely removes metal chips and debris from machinery and work areas. The large comfortable handle is attached to Rare Earth magnets inside the seam-welded, stainless steel tube. To clean this tool, pull the handle away from the stainless steel tube. Collected scrap metal will follow the magnet up the tube until it hits the stripper washer. Once the magnet is past the stripper washer, the magnetic influence will dissipate and the metal falls off. No need to pull or wipe off collected metal.

FEATURES:

- » Maximum temperature 180°F (82°C)
- » Seam-welded, .053" thick tube prevents denting
- » Large grip handle

Diameter (in)	Shaft Length (in)	OAL (in)	Weight (lbs)	Model No.
1	15	19.25	1.25	MM1500EZ
1	36	40.25	2.75	MM3600EZ

SALVAGE MAGNETS

- FEATURES:
- » Retrieves tools, parts, key rings, fishing tackle & more
- » Powerful ceramic magnets for wet or dry applications
- » HDR3045 has a durable stainless steel case and can retrieve broken drill bits from oil & water wells

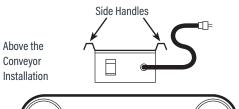
Lift - Ibs (kg)	Size (in)	Weight (lbs)	Model No.
35.0 (15.88)	3-1/2 Dia. x 2-1/2 L	1.07	DT3500
92.5 (41.96)	5-1/4 x 1-7/8 x 2-3/4	1.80	DT0600
300.0 (136.08)	3 Dia. x 5-3/4 L	5.00	HDR3045

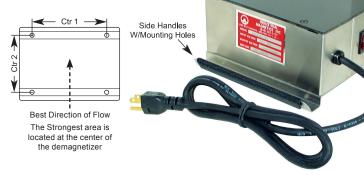
CLEAN-OUT RETRIEVERS

FEATURES:

- » Retrieve ferrous metal items from tanks, acid baths, oil reservoirs, heat bake ovens, etc.
- » Alnico Magnet is attached to a 48 inch wood handle
- » Maximum temperature 300°F (148°C)

Lift - Ibs (kg)	Diameter (in)	Length (in)	Weight (lbs)	Model No.
12.0 (5.45)	1-3/8	48	1.60	COR12
35.0 (15.88)	2-1/2	48	2.50	COR35


USA


CONTINUOUS DUTY SURFACE TYPE DEMAGNETIZERS

Surface Type Demagnetizers are designed for stationary or portable use, providing continuous duty operation as work pieces pass the demagnetizer's face plate. This design allows for installation under, over or alongside conveyors for demagnetizing applications.

FEATURES:

- » Durable, one-piece face plate
- » On/Off switch
- » Portable and/or stationary design
- » Integrated side handles for hand held operation
- » AC On Indicator (DSC423 Only)

Note: 10 ft. cord with grounded plug on 120 VAC models only. 240 VAC models have a 6 ft. three wire cord without plug.

Height (in)	Width (in)	Length (in)	Demagnetization Area (in)	Ctr. 1 (in)	Ctr. 2 (in)	Hole Diameter (in)	Weight (lbs)	Amps (120 VAC)	Amps (240 VAC)	Amps (480 VAC)	Model No.
3-13/16	4-3/4	7-1/4	3 x 4.5	5-5/16	5-3/8	1/4	15.0	2.1	1.1	0.52	DSC423
4-15/16	6-1/4	11-1/4	4 x 6	7-13/16	6-7/8	5/16	33.0	9.0	5.0	2.50	DSC424

CONTINUOUS LOOP TYPE DEMAGNETIZERS AVAILABLE UPON REQUEST

ELECTROMAGNETS & COUNTER WHEELS

ELECTROMAGNETS AND POWER SUPPLY

Electromagnets offer On/Off capability through the application of controlled DC electrical current, controlled holding power and on-command release of ferrous steel parts. Most electromagnets require specially designed power supplies to achieve optimum magnetic performance. IMI offers power supplies for all of your electromagnet applications. Continuous duty 158°F (70°C) to 192°F (89°C) temperature rise. All electromagnets are **100% Duty Cycle.**

Parallel Pole Electromagnets: Ideal for Pick and Place or Lifting Applications where parts have flat surfaces and can be custom machined to specifically fit the application. Side mounted terminal blocks allow one set of lead wires from magnet to power supply (no splicing required, minimum 18 gauge leads). These electromagnets offer broad application potential due to their ability to deliver improved reach out through air gaps (i.e. painted, plated & coated surfaces).

Rectangular & Round Island Pole Electromagnets: Ideal for Pick and Place or Lifting applications where parts have uneven surfaces or odd shapes and provide concentrated holding power & high responsiveness in manual or automatic applications.

Power Supply: Designed for manual operation. Uses 120VAC input, 16 to 26VDC variable dual output, 10-foot grounded power cord and fuse protection. Temp. range -4°F to 160°F (-20°C - 71°C). Power supplies with automatic reverse pulse upon release are available.

												Rectangular Electromagne
			Rectan	gular I	sland P	ole E	lectromag	nets				with 120 VAC cord
WLL - Ibs (kg)	Height (in)	Width L (in)	ength (in)	Tap Size	Number Holes		Spacing (in)	Watts	Weight (lbs)	24 VD Model		
50 (22.68)	1-1/4	1-1/2	1-1/2	10-32	1	C	Centered	8.0	0.31	ES2-1	11 -	
80 (36.29)	1-1/4	1-1/2	2-1/2	10-32	2		1	10.0	1.00	ES2-12	21 ESA-121	
150 (68.04)	1-1/2	2-1/2	2-1/2	1/4-20	1	C	Centered	14.0	2.00	ES2-2	21 ESA-221	
300 (136.08)	1-7/8	2-1/2	4-1/2	1/4-20	2		2	29.0	5.00	ES2-2-	41 ESA-241	
850 (385.55)	2-1/2	4	8	3/8-16	2		4	58.0	18.00	ES2-4	82 -	
			Rou	nd Isla	nd Pole	Elec	tromagne	ts				
WLL - Ibs (kg)	Diameter	(in) Len		Tap Si			ight (lbs)		Model N	No. 120	VAC Model No.	
5 (2.27)	3/4		-1/4	10-32	2 1.4		0.2	E	R2-071		-	
7 (3.18)	1		3/4	10-32	2 1.5		0.2	E	R2-101		-	
12 (5.44)	1		-1/4	10-32	3.6		0.3	E	R2-102		-	
25 (11.34)	1-1/4		-1/4	1/4-20) 4.4		0.4	E	R2-103		-	
40 (18.14)	1-1/2		-1/2	1/4-20) 4.6		0.7	E	R2-104		-	2 Martin
90 (40.82)	2	1	-5/8	1/4-20	0.0		1.2	E	R2-201		ERA-201	
100 (45.36)	2	2	2-1/2	1/4-20) 16.8		2.0	E	R2-202		ERA-202	Devel
200 (90.72)	3		3	5/16-1			5.0	E	R2-303		ERA-303	Round
350 (158.76)	4		3	3/8-16	33.0		9.0	E	R2-403		-	Electromagnet
			P	arallel	Pole El	ectro	magnets					Contraction of the second s
WLL - Ibs (kg)	Height (in)	Width (i					Spacing (i	n) Wat	ts Weigh	nt (Ibs) 2	4 VDC Model No.	
55 (24.95)	1-3/8	1	2		1/4-20	2	1	6	0.	75	EP2-121	
80 (36.29)	1-3/8	1	3		1/4-20	2	2	9	1	.0	EP2-131	
100 (45.36)	1-3/8	1	4		1/4-20	2	3	11	2	.0	EP2-141	
230 (104.33)	2-3/4	2	4		5/16-18	2	3	21	5	.0	EP2-242	
320 (140.62)	2-3/4	2	6		5/16-18	2	4.5	30	8	.0	EP2-262	
430 (195.04)	2-3/4	2	8		5/16-18	2	6.50	36	10	0.0	EP2-282	Parallel Pole
					Power S	lagu	v					Electromagnet
Height (in)	Width	ו (in)	Length		Wat		Weigh	t (lbs)	An	nps	Model No.	
1-3/8	3-5/	/16	6-1/4		10	0	1.0	. 0	4	.5	PSA1210SB	

Power Supply

Custom Electromagnets are available.

MAGNETIC COUNTER WHEELS

Magnetic counter wheels can be used with a mechanical counter to measure the length of coiled steel and aluminum. Allowing the operator to monitor shift or roll production, detect shortages or overages and record the amount of defective stock. Unlike rubber faced wheels, magnetic wheels do not tend to slip on oily stock. When used in aluminum applications, magnetic counters can run on the steel feed or pinch rolls.

FEATURES:

» Ideal Wheel dia. is 3.8197" ±0.0010" to measure one linear foot per revolution.

» The face width is 0.813" with a 0.5" long hub with a 1/4-20 set screw.

Description	Model No.
Counter Wheel - 3/8" Bore	5C926-038
Counter Wheel - 1/2" Bore	5C926-050

TOLL FREE 1.800.662.4638 imi@magnetics.com

TRANSPORTERS® & END OF ARM TOOLING

TRANSPORTER[®] LP LOW PROFILE (TPLP)

Low Profile (TPLP) Transporter® Magnets

The Transporter[®] LP is designed to directly replace vacuum cups with minor tooling and valve adjustments. Powerful Rare Earth magnets positively hold the parts during transfer, greatly reducing the chance of slipping and shifting of your part due to oily coatings. An optional "low-skid" boot is also available to increase grip on parts during transfer. A short burst of shop air pressure is applied in order to release parts. Perfect for automated press to press transfer systems, robotic pick & place systems and machine loading/ unloading

FEATURES:

- » Uses up to 95% less air than vacuum cups
- » Outlasts vacuum cups in most applications
- » Grasps odd shaped or perforated parts
- » Increases production and reduces shop air costs
- » Designed for long, maintenance-free operation
- » Operates effectively in any orientation
- » Class "A" blank protection with covered magnets
- » Destacking option prevents double-blanking
- » Powerful Rare Earth magnet positively holds parts no dropping or shifting in the event of air loss
- » Threads onto a variety of typical 3/8 NPT vacuum cup tooling
- » Lightweight, low-profile design for minimal die clearance
- » Easy installation on existing tooling booms or robotic face plates
- » Instantaneous pick-up and release

Transporter LP Options

Double Acting (Option DA): Features 0-Ring seals & extra air inlet that allow a short blast of air to engage or disengage the grip function. The double acting option is only available on the TPLP30 & TPLP50 magnets. Operates at a low pressure of 20 psi (30 psi maximum), allows use of 1/4" Lines & can run up to 16 magnets from 1 valve.

De-stacking (Option DS): The de-stacking option is required for applications de-stacking metal that is thinner than .0478" (18 ga) with the TPLP30 model. The de-stack option features a special magnetic circuit that is designed to de-stack sheets as thin as .030" (22 ga). The optional low-skid boot is required for certain applications.

3/8 BSPP Fitting (Option BS): 3/8 British Standard Pipe Parallel Thread, available on TPLP30 models only.

Transporter LP Accessories

We offer a large selection of TPLP accessory to handle your installation, operation and maintenance requirements such as various mounting options, manifolds and magnet face covers.

The Bulk Head Spring Mount is ideal for installation on end user specified mounting plates. The Proximity switch mount is designed for the TPLP15 and TPLP30 and accepts a 12mm proximity switch.

The **Swivel Mount** or **Spring Compensator** can be added to new or existing Transporter TPLP30's for best part compliance. These lightweight, anodized, aluminum constructed mounts fit most TPLP30 magnets to accommodate material variances and uneven surfaces. Low center of rotation allows magnet to stay on target. Our newly styled upper housing was redesigned with a groove to accommodate these mounts. If your TPLP30 does not contain a mounting groove, a replacement upper housing can be purchased.

Low Skid Boots and Pads protect against marring of class "A" blanks while reducing the likelihood of part shifting and extending the life of the magnet by protecting the face from wear and. The boots cover the edge of the cup for complete blank protection while the pads cover the face of the cup for increased wear protection to extend the life of the magnet.

For more information on this product, contact us by phone, email or visit our website to request a TPLP Tech Sheet.

TPLP30DA

Grip

Release

TRANSPORTERS® & END OF ARM TOOLING

TRANSPORTER[®] - CYLINDER ACTUATED (TPCA)

Transporter® Magnets are ideal for use where vacuum cups and grippers are typically used for lifting and moving steel sheets, blanks, stamped parts and complete assemblies.

APPLICATIONS & BENEFITS:

- » Automated press to press transfer systems
- » Robotic "Pick & Place"
- » Manual and automated machine loading/unloading
- » Outlasts vacuum cups in most applications
- » Grasps odd shaped or perforated parts
- » Increases production and reduces shop air costs
- » Designed for long, maintenance-free operation
- » Operates effectively in any orientation
- » Will not drop parts if system air-loss occurs
- » Destacking (requires proper magnet selection)

Cylinder Actuated Transporter® Magnets (TPCA)

The patented Transporter[®] utilizes a powerful, Rare Earth, Permanent Magnet to pick and place metal parts in automated transfer and manually operated material handling applications. Offering more options for pick-up points on stamped, forged and formed parts or complete parts assemblies. Offers increased material handling safety and a significant reduction over vacuum cups in shop air costs.

Ideal for steel lifting applications in the Automotive, Appliance and Office Furniture industries and available in many standard and custom configurations to best suit the needs of your application.

FEATURES:

- » Positively holds parts no dropping
- » Instantaneous pickup and release
- » Permanent magnet requires no electricity

OPTIONS:

- » Solenoid control valves
- » Custom designed magnet housings
- » Alternate magnetic circuits for specific lifting requirements
- » Magnet mounted control valves
- » Magnets designed into ergonomic lifting systems

For more information on this product, contact us by phone, email or visit our website to request a Transporter Tech Sheet.

TRANSPORTER[®] MAGVAC (TPMV)

The Transporter® MagVac combines magnet technology with vacuum cups to create a next generation lifting tool.

BENEFITS:

- » Powerful magnetic gripper combined with a vacuum cup for powerful holding
- » Lift steel or perforated parts as well as aluminum and stainless steel
- » Perfect for robotic systems, press transfer systems and all sheet metal applications
- » Vacuum pads can be removed for single use as a standard lift magnet on ferrous parts
- » No more replacing vacuum cups every week
- » No dropping parts from loss of air (for ferrous parts), excess mill oil or weld slag
- » Maximum temperature of 176°F (80°C)
- » All suction cup pads are made from Thermoplastic Polyurethane/TPU

For more information on this product, contact us by phone, email or visit our website to request a Transporter Tech Sheet.

IXTUR[®] PNEUMATIC MAGNETS

IXTUR Pneumatic Magnets are ideal for use where vacuum cups and grippers are typically used for lifting and moving steel sheets, blanks, stamped parts and complete assemblies. Perfect for automated press to press transfer systems, robotic pick & place systems and machine loading/unloading.

BENEFITS:

- » Outlasts vacuum cups in most applications
- » Grasps odd shaped or perforated parts
- » Increases production and reduces shop air costs
- » Operates effectively in any orientation
- » Will not drop parts if system air-loss occurs
- » Maximum operating temperature 122°F (50°C)
- » Double-Acting ON/OFF Air pressure required only to change state from off to on and on to off.

For more information on this product, contact us by phone, email or visit our website to requestan iXTUR Tech Sheet.

TOLL FREE 1.800.662.4638 imi@magnetics.com

47

FANNERS FOR SHEET SEPARATION

SHEETSEEKER® - ERGONOMIC PERMANENT MAGNETIC FANNERS

The SheetSeeker[®] (U.S. Patent: 6,845,976) is a breakthrough in magnetic sheet fanner technology. The magnetic circuit is lifted and locked into place for introduction to a stack of sheet steel. Once the stack is in place, the sliding magnet is unlocked and automatically centers on the top of the stack, fanning the sheet stock. As each sheet is lifted away, the magnet indexes down automatically, fanning to the bottom of the stack.

FEATURES:

- » Powerful, Rare Earth, automatic-indexing magnetic circuit
- » Up to 60% lighter than standard sheet fanners with the same fanning strength
- » Magnet automatically indexes down to ensure optimum fanning down to the last sheet
- » Lightweight design and convenient top mounted carry handle allow for user-friendly transport
- » Minimum height of 12" with custom designs and options available
- » Fans from 30 gauge sheets to 3/16" plate
- » Durable stainless steel construction
- » Slide handle for positioning the fanning circuit
- » Top locks for slide handle
- » Break Away Bar
- » Optional On/Off magnetic base for easy installation and removal

For more information on this product, contact us by phone, email or visit our website to request a Fanner Tech Sheet.

AIR CYLINDER FANNERS - PERMANENT MAGNETIC FANNERS

Air Cylinder Actuated Sheet Fanners have an air release system that pulls the magnet inside away from the face of the fanner for easy and safe removal of the fanner from the stack.

FEATURES:

- » Reduce costs and increase safety for destacking steel sheet stock
- » A powerful, Rare Earth magnetic field automatically separates sheets
- » As the top sheet is removed, the next sheet instantly fans up
- » Assists prying apart sticky, oily, pre-finished or polished sheets
- » Eliminates die-damaging double blanking in automated operations
- » On/Off of an electromagnet with the benefit of a permanent magnet
- » Allows for mid stack change over

Permanent Magnetic Fanners handle steel sheets of almost any length, width or shape. The sheets near the top of the stack separate instantly from a 1/2" to 3/4" gap, depending on sheet thickness and size.

For more information on this product, contact us by phone, email or visit our website to request a Fanner Tech Sheet.

AIR SPRING FANNERS - PERMANENT MAGNETIC FANNERS

Air Spring Fanners have an air spring system that pushes the magnet inside toward the face of the fanner when air pressure is present. When the air pressure is turned off or disconnected the air spring will deflate and the magnet will move away from the face of the fanner creating air gap that in essence turns the magnet off. This eliminates the risk of having metal accidently attracted to the fanner during transportation or stack changeovers.

FEATURES:

- » Powerful, Rare Earth, magnetic circuit
- » On/Off capability helps prevent injury when introducing new materials to the fanner
- » "Fail-Safe" mode automatically returns the magnet to the "Off" position with loss of air pressure
- » Fans from 30 gauge sheets to 3/16" plate
- » Durable stainless steel welded cover construction

For more information on this product, contact us by phone, email or visit our website to request a Fanner Tech Sheet.

U.S. Patent No. 6,845,976

FANNERS FOR SHEET SEPARATION

PERMANENT MAGNETIC SHEET FANNERS

Permanent Magnetic Fanners handle steel sheets of almost any length, width or shape. The sheets near the top of the stack separate instantly from a 1/2" to 3/4" gap, depending on sheet thickness and size.

FEATURES:

- » Reduce costs and increase safety for destacking steel sheet stock
- » A powerful magnetic field automatically separates sheets
- » As the top sheet is removed, the next sheet instantly fans up
- » Assists prying apart sticky, oily, pre-finished or polished sheets
- » Eliminates die-damaging double blanking in automated operations
- » Three powerful designs for optimum fanning performance
 - Thin Gauge Fanner (TNF), 20 to 30 Gauge
 - Medium Gauge Fanner (MGF), 12 to 22 Gauge
 - Thick Gauge Fanner (TKF), 7 to 12 Gauge
- » Pre-tapped holes for mounting to your equipment
- » Bolt on angle base plate and handle with mounting hardware included
- » Durable welded construction

For more information on this product, contact us by phone, email or visit our website to request a Fanner Tech Sheet.

AIR KNIFE FANNERS - PERMANENT MAGNETIC FANNERS

Permanent Magnet Sheet Fanners with Air Knives allow for ferrous and non-ferrous sheets to be separated in destacking applications. While the magnet force will work with all ferrous metals, the air knives separate all non-ferrous metals by pushing air in between the sheets causing them to rise up from one another.

FEATURES:

- » Reduce costs and increase safety for destacking ferrous and non-ferrous sheets
- » A magnetic field automatically separates ferrous sheets
- » Powerful air knives automatically separate non-ferrous sheets
- » As the top sheet is removed, the next sheet instantly fans up
- » Assists prying apart sticky, oily, pre-finished or polished sheets
- » Eliminates die-damaging double blanking in automated operations
- » Handle steel sheets of almost any length, width or shape
- » Sheets near the top of the stack separate instantly.

For more information on this product, contact us by phone, email or visit our website to request a Fanner Tech Sheet.

MAGNETIC PINFANNERS[™] - PERMANENT MAGNETIC FANNERS

Use pallet mount Permanent Magnetic PinFanners[™] with Hex, Round or T-Slot Pallet Pins in Stacking/ Destacking, Blanking Lines and Press Feeding applications. PinFanners[™] can be used to separate curved edge or odd shaped blanks. PinFanners[™] stay right on the pallet, from the blanking line to the press, without any extra set up! Adjustable magnet positions ensure direct contact with the blank for maximum fanning ability. Mounted directly to the pallet, PinFanners[™] reduce maintenance down time on blanking lines. *For more information on this product, contact us by phone, email or visit our website to request fanner Tech Sheet.*

ADJUSTABLE STRENGTH PERMANENT & APPLICATION SPECIFIC FANNERS

CONVEYORS & CONVEYOR COMPONENTS

CONVEYORS - LOW PROFILE

FEATURES:

- » Available in Magnetic and Non-Magnetic models
- » Sized to match your application requirements
- » Low profile design allows for fast belt replacement, reducing downtime
- » Oil and abrasion resistant endless urethane belts for longer belt life & less maintenance
- » Crowned take-up pulleys for easy belt tracking and take-up adjustments
- » Crowned drive pulleys are for positive belt traction and accurate alignment
- » Magnetic unit circuits are the same width as the belt to hold parts firmly from edge to edge
- » Gang or individual drive options are available

For more information contact us to request a Conveyor Tech Sheet.

CONVEYORS - TRANSFERRING & FEEDING

Magnetic Transfer Conveyors are ideal for automating sheet handling in various applications including: stamping, forming, sheering, slitting, sorting and stacking. Magnetic Transfer Conveyors contain permanent, Perm-Electro or electromagnetic rails that work to automate processes and decrease handling for improved production and safety.

Sheet sizes, thickness, weights, surface treatments and direction of transfer are all taken into consideration when designing a transfer conveyor for your application.

APPLICATIONS:

- » Stacking/Destacking lines
- » Part transfer between work stations and presses
- » Press feeding
- » Coil unloading

FEATURES:

- » Easy belt removal opposite of drive side
- » Drive system can be mounted on either side of the conveyor and conveyors can be gang driven

MAGNETIC SKATE RAIL

Magnetic Skate Rail is ideal for use in conjunction with Magnetic Transfer Conveyors in stacking, destacking and press feeding applications. Typically positioned on the outside edge of a blank and parallel to magnetic transfer conveyor(s), the Skate Rail Magnets hold steel blanks securely up against a series of rollers, preventing flexing or bending of the sheet as it is conveyed. The rollers allow blanks to roll easily. The magnet position can be adjusted to accommodate the size and thickness of different blanks.

BENEFITS:

- » Prevents bending, flexing or sag of large sheets during transfer, outboard of magnetic conveyors
- » Reduces the need for additional magnetic conveyors

For more information contact us to request a Skate Rail Tech Sheet.

ELECTROMAGNETIC CONVEYING RAIL

Magnetic Electro-Rail is commonly used for automated conveying, transferring and lifting of steel sheets and parts in various industries including: Automotive, Appliance, and Office Furniture. Electro-Rail eliminates the need for costly and time -consuming manual handling and feeding of presses. Magnetic Electro-Rail increases production speeds and improves safety.

Using a powerful electromagnetic circuit to move and hold steel objects during conveying, these electromagnets provide On/Off capability and allow the user to control drop points throughout the system.

For more information contact us to request a Conveying Rail Tech Sheet.

can be gang driven

APPLICATIONS:

- » Stacking/Destacking Lines
- » Press Feeding

FEATURES:

- » Powerful permanent magnetic circuit
- » Adjustable magnetic strength
- » Neoprene rollers prevent scratching

CONVEYORS & CONVEYOR COMPONENTS

PERM-ELECTRO HYBRID RAIL

APPLICATIONS:

- » For belt transfer of 22 to 12 gauge flat blanks and sheet stock
- » Automated Sheet Handling
- » Transfer of parts between presses
- » Stacking
- » Overhead Conveying

BENEFITS:

- » Automated press feeding
- » Controlled Drop Points
- » No battery backup required

Permanent-Electro Hybrid Rail is used for conveying and transferring steel sheets and parts in various

industries including: Automotive, Appliance and Office Furniture. Hybrid Rail allows for automated handling and feeding of steel items, improving production and safety. This rail utilizes a permanent magnetic circuit to move and hold steel objects during conveying. The coil is only energized for release the parts from the conveyor belt. This is a permanent magnet with an electrical release function. This fast acting On/Off action enables the magnets to be controlled for specific drop points throughout the conveying system.

PERMANENT CONVEYING RAIL & ROLLS/PULLEYS

Magnetic Conveying Rail utilizes powerful permanent magnets to hold ferrous parts such as steel containers, composite cans, lids and more firmly in place during conveying. The magnetic rail is installed as a stationary component and allows the conveyor belting to ride over the top of it. The strong magnetic field holds parts tightly to the belt surface, even during vertical, inclined or horizontal conveying. Conveying speeds can be increased while eliminating the slipping or rolling of items.

BENEFITS:

- » Increased production rates
- » Uniform part orientation and holding
- » Straight, curved or radius designs » Powerful Permanent Magnets

Additional benefits include better utilization of space within a facility, noise reduction, correct part orientation and on-time material flow. IMI has a full line of quality magnetic components available in a wide variety of sizes and strengths to meet your application needs.

For more information on this product, contact us by phone, email or visit our website to request a **Conveying Rail Tech Sheet.**

CUSTOM MAGNETIC CONVEYING SOLUTIONS

Factory experts will develop a custom magnetic conveyor solution. IMI will provide support throughout the entire process from field sales support to design, manufacturing and final testing.

For more information on custom conveying products, please contact IMI at 888.582.0823 or go to www. magnetics.com

Test Blanks Off End of Coi

Stacking Round Blanks

Has Your Lift Magnet Been Tested?

Lift Magnets cannot be visually inspected alone. Lift Magnet Failure is often the result of internal damage to the magnetic material and is not evident by simple visual inspections that can be performed on other lifting devices.

Our Lift Magnet Testing and Certification Service performs both a thorough visual inspection and functional testing of your magnetic lifting products using testing techniques and equipment that meet the ASME B30.20 Standards for Below-the-Hook Magnetic Lifting Devices.

After testing, we provide documentation of the testing and a certificate of conformance if the magnet meets the manufacturer's labeled Working Load Limit (WLL) rating. Damaged label replacement is also included for Industrial Magnetics Inc. labeled Lift Magnets.

COMMON FACTORS FOR LIFT MAGNET LOSS OF PERFORMANCE OR FAILURE

- 1. Blunt force impact such as dropping, or banging on, the lift magnet can cause fractures in the magnet material
- 2. High heat: If the magnet is exposed to temperatures above its' capabilities it will lose magnetism
- 3. Exposure to electrical fields, like generators or welding ground circuits, will result in loss of magnetism.
- 4. External factors that influence a lift magnet's performance are; nicks, scratches, gouges, rust, etc. to the contact surface of the lifter.

INDUSTRIAL MAGNETICS.

magnetics.com

1385 S M 75 • Boyne City, MI 49712 Phone: 231.582.3100 • 800.662.4638 Mag-Mate': 888.582.0822 • Automation: 888.582.0823

INDUSTRIAL MAGNETICS, INC. IS A PROUD MEMBER OF:

Distributed By:
